Metamath Proof Explorer


Theorem idfu1stf1o

Description: The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses idfu1stf1o.i
|- I = ( idFunc ` C )
idfu1stf1o.b
|- B = ( Base ` C )
Assertion idfu1stf1o
|- ( C e. Cat -> ( 1st ` I ) : B -1-1-onto-> B )

Proof

Step Hyp Ref Expression
1 idfu1stf1o.i
 |-  I = ( idFunc ` C )
2 idfu1stf1o.b
 |-  B = ( Base ` C )
3 f1oi
 |-  ( _I |` B ) : B -1-1-onto-> B
4 id
 |-  ( C e. Cat -> C e. Cat )
5 1 2 4 idfu1st
 |-  ( C e. Cat -> ( 1st ` I ) = ( _I |` B ) )
6 5 f1oeq1d
 |-  ( C e. Cat -> ( ( 1st ` I ) : B -1-1-onto-> B <-> ( _I |` B ) : B -1-1-onto-> B ) )
7 3 6 mpbiri
 |-  ( C e. Cat -> ( 1st ` I ) : B -1-1-onto-> B )