Description: The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfu1stf1o.i | |- I = ( idFunc ` C ) |
|
| idfu1stf1o.b | |- B = ( Base ` C ) |
||
| Assertion | idfu1stf1o | |- ( C e. Cat -> ( 1st ` I ) : B -1-1-onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfu1stf1o.i | |- I = ( idFunc ` C ) |
|
| 2 | idfu1stf1o.b | |- B = ( Base ` C ) |
|
| 3 | f1oi | |- ( _I |` B ) : B -1-1-onto-> B |
|
| 4 | id | |- ( C e. Cat -> C e. Cat ) |
|
| 5 | 1 2 4 | idfu1st | |- ( C e. Cat -> ( 1st ` I ) = ( _I |` B ) ) |
| 6 | 5 | f1oeq1d | |- ( C e. Cat -> ( ( 1st ` I ) : B -1-1-onto-> B <-> ( _I |` B ) : B -1-1-onto-> B ) ) |
| 7 | 3 6 | mpbiri | |- ( C e. Cat -> ( 1st ` I ) : B -1-1-onto-> B ) |