Metamath Proof Explorer


Theorem idfu1stf1o

Description: The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses idfu1stf1o.i I = id func C
idfu1stf1o.b B = Base C
Assertion idfu1stf1o C Cat 1 st I : B 1-1 onto B

Proof

Step Hyp Ref Expression
1 idfu1stf1o.i I = id func C
2 idfu1stf1o.b B = Base C
3 f1oi I B : B 1-1 onto B
4 id C Cat C Cat
5 1 2 4 idfu1st C Cat 1 st I = I B
6 5 f1oeq1d C Cat 1 st I : B 1-1 onto B I B : B 1-1 onto B
7 3 6 mpbiri C Cat 1 st I : B 1-1 onto B