Description: The composition of two functors is a functor. Proposition 3.23 of Adamek p. 33. (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofucla.f | |- ( ph -> F ( C Func D ) G ) |
|
| cofucla.k | |- ( ph -> K ( D Func E ) L ) |
||
| Assertion | cofucla | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) e. ( C Func E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofucla.f | |- ( ph -> F ( C Func D ) G ) |
|
| 2 | cofucla.k | |- ( ph -> K ( D Func E ) L ) |
|
| 3 | df-br | |- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
|
| 4 | 1 3 | sylib | |- ( ph -> <. F , G >. e. ( C Func D ) ) |
| 5 | df-br | |- ( K ( D Func E ) L <-> <. K , L >. e. ( D Func E ) ) |
|
| 6 | 2 5 | sylib | |- ( ph -> <. K , L >. e. ( D Func E ) ) |
| 7 | 4 6 | cofucl | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) e. ( C Func E ) ) |