Metamath Proof Explorer


Theorem cofucla

Description: The composition of two functors is a functor. Proposition 3.23 of Adamek p. 33. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses cofucla.f
|- ( ph -> F ( C Func D ) G )
cofucla.k
|- ( ph -> K ( D Func E ) L )
Assertion cofucla
|- ( ph -> ( <. K , L >. o.func <. F , G >. ) e. ( C Func E ) )

Proof

Step Hyp Ref Expression
1 cofucla.f
 |-  ( ph -> F ( C Func D ) G )
2 cofucla.k
 |-  ( ph -> K ( D Func E ) L )
3 df-br
 |-  ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) )
4 1 3 sylib
 |-  ( ph -> <. F , G >. e. ( C Func D ) )
5 df-br
 |-  ( K ( D Func E ) L <-> <. K , L >. e. ( D Func E ) )
6 2 5 sylib
 |-  ( ph -> <. K , L >. e. ( D Func E ) )
7 4 6 cofucl
 |-  ( ph -> ( <. K , L >. o.func <. F , G >. ) e. ( C Func E ) )