| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofucl.f |
|- ( ph -> F e. ( C Func D ) ) |
| 2 |
|
cofucl.g |
|- ( ph -> G e. ( D Func E ) ) |
| 3 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 4 |
3 1 2
|
cofuval |
|- ( ph -> ( G o.func F ) = <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) |
| 5 |
3 1 2
|
cofu1st |
|- ( ph -> ( 1st ` ( G o.func F ) ) = ( ( 1st ` G ) o. ( 1st ` F ) ) ) |
| 6 |
4
|
fveq2d |
|- ( ph -> ( 2nd ` ( G o.func F ) ) = ( 2nd ` <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) ) |
| 7 |
|
fvex |
|- ( 1st ` G ) e. _V |
| 8 |
|
fvex |
|- ( 1st ` F ) e. _V |
| 9 |
7 8
|
coex |
|- ( ( 1st ` G ) o. ( 1st ` F ) ) e. _V |
| 10 |
|
fvex |
|- ( Base ` C ) e. _V |
| 11 |
10 10
|
mpoex |
|- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) e. _V |
| 12 |
9 11
|
op2nd |
|- ( 2nd ` <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) |
| 13 |
6 12
|
eqtrdi |
|- ( ph -> ( 2nd ` ( G o.func F ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) ) |
| 14 |
5 13
|
opeq12d |
|- ( ph -> <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. = <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) |
| 15 |
4 14
|
eqtr4d |
|- ( ph -> ( G o.func F ) = <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. ) |
| 16 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 17 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 18 |
|
relfunc |
|- Rel ( D Func E ) |
| 19 |
|
1st2ndbr |
|- ( ( Rel ( D Func E ) /\ G e. ( D Func E ) ) -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 20 |
18 2 19
|
sylancr |
|- ( ph -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 21 |
16 17 20
|
funcf1 |
|- ( ph -> ( 1st ` G ) : ( Base ` D ) --> ( Base ` E ) ) |
| 22 |
|
relfunc |
|- Rel ( C Func D ) |
| 23 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 24 |
22 1 23
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 25 |
3 16 24
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 26 |
|
fco |
|- ( ( ( 1st ` G ) : ( Base ` D ) --> ( Base ` E ) /\ ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) -> ( ( 1st ` G ) o. ( 1st ` F ) ) : ( Base ` C ) --> ( Base ` E ) ) |
| 27 |
21 25 26
|
syl2anc |
|- ( ph -> ( ( 1st ` G ) o. ( 1st ` F ) ) : ( Base ` C ) --> ( Base ` E ) ) |
| 28 |
5
|
feq1d |
|- ( ph -> ( ( 1st ` ( G o.func F ) ) : ( Base ` C ) --> ( Base ` E ) <-> ( ( 1st ` G ) o. ( 1st ` F ) ) : ( Base ` C ) --> ( Base ` E ) ) ) |
| 29 |
27 28
|
mpbird |
|- ( ph -> ( 1st ` ( G o.func F ) ) : ( Base ` C ) --> ( Base ` E ) ) |
| 30 |
|
eqid |
|- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) |
| 31 |
|
ovex |
|- ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) e. _V |
| 32 |
|
ovex |
|- ( x ( 2nd ` F ) y ) e. _V |
| 33 |
31 32
|
coex |
|- ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) e. _V |
| 34 |
30 33
|
fnmpoi |
|- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
| 35 |
13
|
fneq1d |
|- ( ph -> ( ( 2nd ` ( G o.func F ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 36 |
34 35
|
mpbiri |
|- ( ph -> ( 2nd ` ( G o.func F ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 37 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 38 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 39 |
20
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 40 |
25
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 41 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
| 42 |
40 41
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 43 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
| 44 |
40 43
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 45 |
16 37 38 39 42 44
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 46 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 47 |
24
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 48 |
3 46 37 47 41 43
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 49 |
|
fco |
|- ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) /\ ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 50 |
45 48 49
|
syl2anc |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 51 |
|
ovex |
|- ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) e. _V |
| 52 |
|
ovex |
|- ( x ( Hom ` C ) y ) e. _V |
| 53 |
51 52
|
elmap |
|- ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) e. ( ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ^m ( x ( Hom ` C ) y ) ) <-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 54 |
50 53
|
sylibr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) e. ( ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ^m ( x ( Hom ` C ) y ) ) ) |
| 55 |
1
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> F e. ( C Func D ) ) |
| 56 |
2
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> G e. ( D Func E ) ) |
| 57 |
3 55 56 41 43
|
cofu2nd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( G o.func F ) ) y ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) |
| 58 |
3 55 56 41
|
cofu1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` x ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) |
| 59 |
3 55 56 43
|
cofu1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` y ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) |
| 60 |
58 59
|
oveq12d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) = ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 61 |
60
|
oveq1d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) = ( ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ^m ( x ( Hom ` C ) y ) ) ) |
| 62 |
54 57 61
|
3eltr4d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( G o.func F ) ) y ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) |
| 63 |
62
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` ( G o.func F ) ) y ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) |
| 64 |
|
fveq2 |
|- ( z = <. x , y >. -> ( ( 2nd ` ( G o.func F ) ) ` z ) = ( ( 2nd ` ( G o.func F ) ) ` <. x , y >. ) ) |
| 65 |
|
df-ov |
|- ( x ( 2nd ` ( G o.func F ) ) y ) = ( ( 2nd ` ( G o.func F ) ) ` <. x , y >. ) |
| 66 |
64 65
|
eqtr4di |
|- ( z = <. x , y >. -> ( ( 2nd ` ( G o.func F ) ) ` z ) = ( x ( 2nd ` ( G o.func F ) ) y ) ) |
| 67 |
|
vex |
|- x e. _V |
| 68 |
|
vex |
|- y e. _V |
| 69 |
67 68
|
op1std |
|- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
| 70 |
69
|
fveq2d |
|- ( z = <. x , y >. -> ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) = ( ( 1st ` ( G o.func F ) ) ` x ) ) |
| 71 |
67 68
|
op2ndd |
|- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
| 72 |
71
|
fveq2d |
|- ( z = <. x , y >. -> ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) = ( ( 1st ` ( G o.func F ) ) ` y ) ) |
| 73 |
70 72
|
oveq12d |
|- ( z = <. x , y >. -> ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) = ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ) |
| 74 |
|
fveq2 |
|- ( z = <. x , y >. -> ( ( Hom ` C ) ` z ) = ( ( Hom ` C ) ` <. x , y >. ) ) |
| 75 |
|
df-ov |
|- ( x ( Hom ` C ) y ) = ( ( Hom ` C ) ` <. x , y >. ) |
| 76 |
74 75
|
eqtr4di |
|- ( z = <. x , y >. -> ( ( Hom ` C ) ` z ) = ( x ( Hom ` C ) y ) ) |
| 77 |
73 76
|
oveq12d |
|- ( z = <. x , y >. -> ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) = ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) |
| 78 |
66 77
|
eleq12d |
|- ( z = <. x , y >. -> ( ( ( 2nd ` ( G o.func F ) ) ` z ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> ( x ( 2nd ` ( G o.func F ) ) y ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) ) |
| 79 |
78
|
ralxp |
|- ( A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( 2nd ` ( G o.func F ) ) ` z ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` ( G o.func F ) ) y ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) |
| 80 |
63 79
|
sylibr |
|- ( ph -> A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( 2nd ` ( G o.func F ) ) ` z ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) |
| 81 |
|
fvex |
|- ( 2nd ` ( G o.func F ) ) e. _V |
| 82 |
81
|
elixp |
|- ( ( 2nd ` ( G o.func F ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> ( ( 2nd ` ( G o.func F ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( 2nd ` ( G o.func F ) ) ` z ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) ) |
| 83 |
36 80 82
|
sylanbrc |
|- ( ph -> ( 2nd ` ( G o.func F ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) |
| 84 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 85 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 86 |
24
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 87 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
| 88 |
3 84 85 86 87
|
funcid |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) |
| 89 |
88
|
fveq2d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 90 |
|
eqid |
|- ( Id ` E ) = ( Id ` E ) |
| 91 |
20
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 92 |
25
|
ffvelcdmda |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 93 |
16 85 90 91 92
|
funcid |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) = ( ( Id ` E ) ` ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 94 |
89 93
|
eqtrd |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) ) = ( ( Id ` E ) ` ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 95 |
1
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> F e. ( C Func D ) ) |
| 96 |
2
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> G e. ( D Func E ) ) |
| 97 |
|
funcrcl |
|- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
| 98 |
1 97
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 99 |
98
|
simpld |
|- ( ph -> C e. Cat ) |
| 100 |
99
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> C e. Cat ) |
| 101 |
3 46 84 100 87
|
catidcl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
| 102 |
3 95 96 87 87 46 101
|
cofu2 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) ) ) |
| 103 |
3 95 96 87
|
cofu1 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( G o.func F ) ) ` x ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) |
| 104 |
103
|
fveq2d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 105 |
94 102 104
|
3eqtr4d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) ) |
| 106 |
86
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 107 |
|
simplr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> x e. ( Base ` C ) ) |
| 108 |
|
simprlr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> z e. ( Base ` C ) ) |
| 109 |
3 46 37 106 107 108
|
funcf2 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( x ( 2nd ` F ) z ) : ( x ( Hom ` C ) z ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
| 110 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 111 |
100
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> C e. Cat ) |
| 112 |
|
simprll |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> y e. ( Base ` C ) ) |
| 113 |
|
simprrl |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> f e. ( x ( Hom ` C ) y ) ) |
| 114 |
|
simprrr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> g e. ( y ( Hom ` C ) z ) ) |
| 115 |
3 46 110 111 107 112 108 113 114
|
catcocl |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 116 |
|
fvco3 |
|- ( ( ( x ( 2nd ` F ) z ) : ( x ( Hom ` C ) z ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) |
| 117 |
109 115 116
|
syl2anc |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) |
| 118 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 119 |
3 46 110 118 106 107 112 108 113 114
|
funcco |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 120 |
119
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) ) |
| 121 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
| 122 |
91
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 123 |
92
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 124 |
25
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 125 |
124
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 126 |
125 112
|
ffvelcdmd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 127 |
125 108
|
ffvelcdmd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` F ) ` z ) e. ( Base ` D ) ) |
| 128 |
3 46 37 106 107 112
|
funcf2 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 129 |
128 113
|
ffvelcdmd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 130 |
3 46 37 106 112 108
|
funcf2 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( y ( 2nd ` F ) z ) : ( y ( Hom ` C ) z ) --> ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
| 131 |
130 114
|
ffvelcdmd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( y ( 2nd ` F ) z ) ` g ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
| 132 |
16 37 118 121 122 123 126 127 129 131
|
funcco |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) = ( ( ( ( ( 1st ` F ) ` y ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( y ( 2nd ` F ) z ) ` g ) ) ( <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ( comp ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) ) |
| 133 |
117 120 132
|
3eqtrd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( ( ( 1st ` F ) ` y ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( y ( 2nd ` F ) z ) ` g ) ) ( <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ( comp ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) ) |
| 134 |
95
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> F e. ( C Func D ) ) |
| 135 |
96
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> G e. ( D Func E ) ) |
| 136 |
3 134 135 107 108
|
cofu2nd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( x ( 2nd ` ( G o.func F ) ) z ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ) |
| 137 |
136
|
fveq1d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) |
| 138 |
103
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` x ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) |
| 139 |
3 134 135 112
|
cofu1 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` y ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) |
| 140 |
138 139
|
opeq12d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. = <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ) |
| 141 |
3 134 135 108
|
cofu1 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` z ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) |
| 142 |
140 141
|
oveq12d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) = ( <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ( comp ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) ) |
| 143 |
3 134 135 112 108 46 114
|
cofu2 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) = ( ( ( ( 1st ` F ) ` y ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( y ( 2nd ` F ) z ) ` g ) ) ) |
| 144 |
3 134 135 107 112 46 113
|
cofu2 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 145 |
142 143 144
|
oveq123d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) = ( ( ( ( ( 1st ` F ) ` y ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( y ( 2nd ` F ) z ) ` g ) ) ( <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ( comp ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) ) |
| 146 |
133 137 145
|
3eqtr4d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) |
| 147 |
146
|
anassrs |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) |
| 148 |
147
|
ralrimivva |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) |
| 149 |
148
|
ralrimivva |
|- ( ( ph /\ x e. ( Base ` C ) ) -> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) |
| 150 |
105 149
|
jca |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) ) |
| 151 |
150
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` C ) ( ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) ) |
| 152 |
|
funcrcl |
|- ( G e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) |
| 153 |
2 152
|
syl |
|- ( ph -> ( D e. Cat /\ E e. Cat ) ) |
| 154 |
153
|
simprd |
|- ( ph -> E e. Cat ) |
| 155 |
3 17 46 38 84 90 110 121 99 154
|
isfunc |
|- ( ph -> ( ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) <-> ( ( 1st ` ( G o.func F ) ) : ( Base ` C ) --> ( Base ` E ) /\ ( 2nd ` ( G o.func F ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) /\ A. x e. ( Base ` C ) ( ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) ) ) ) |
| 156 |
29 83 151 155
|
mpbir3and |
|- ( ph -> ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) ) |
| 157 |
|
df-br |
|- ( ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) <-> <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. e. ( C Func E ) ) |
| 158 |
156 157
|
sylib |
|- ( ph -> <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. e. ( C Func E ) ) |
| 159 |
15 158
|
eqeltrd |
|- ( ph -> ( G o.func F ) e. ( C Func E ) ) |