| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uptrlem1.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 2 |
|
uptrlem1.i |
⊢ 𝐼 = ( Hom ‘ 𝐷 ) |
| 3 |
|
uptrlem1.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
| 4 |
|
uptrlem1.d |
⊢ ∙ = ( comp ‘ 𝐷 ) |
| 5 |
|
uptrlem1.e |
⊢ ⚬ = ( comp ‘ 𝐸 ) |
| 6 |
|
uptrlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
| 7 |
|
uptrlem1.y |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = 𝑌 ) |
| 8 |
|
uptrlem1.z |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 9 |
|
uptrlem1.w |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐶 ) ) |
| 10 |
|
uptrlem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑍 ) ) ) |
| 11 |
|
uptrlem1.b |
⊢ ( 𝜑 → ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝐴 ) = 𝐵 ) |
| 12 |
|
uptrlem1.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 13 |
|
uptrlem1.m |
⊢ ( 𝜑 → 𝑀 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑁 ) |
| 14 |
|
uptrlem1.k |
⊢ ( 𝜑 → ( 〈 𝑀 , 𝑁 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 17 |
16 15 12
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 18 |
17 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑊 ) ∈ ( Base ‘ 𝐷 ) ) |
| 19 |
15 2 3 13 6 18
|
ffthf1o |
⊢ ( 𝜑 → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ( 𝑀 ‘ 𝑋 ) 𝐽 ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) ) ) |
| 20 |
|
inss1 |
⊢ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ⊆ ( 𝐷 Full 𝐸 ) |
| 21 |
|
fullfunc |
⊢ ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 ) |
| 22 |
20 21
|
sstri |
⊢ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ⊆ ( 𝐷 Func 𝐸 ) |
| 23 |
22
|
ssbri |
⊢ ( 𝑀 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑁 → 𝑀 ( 𝐷 Func 𝐸 ) 𝑁 ) |
| 24 |
13 23
|
syl |
⊢ ( 𝜑 → 𝑀 ( 𝐷 Func 𝐸 ) 𝑁 ) |
| 25 |
16 12 24 14 9
|
cofu1a |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) = ( 𝐾 ‘ 𝑊 ) ) |
| 26 |
7 25
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) 𝐽 ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) ) = ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 27 |
26
|
f1oeq3d |
⊢ ( 𝜑 → ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ( 𝑀 ‘ 𝑋 ) 𝐽 ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) ) ↔ ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) ) |
| 28 |
19 27
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 29 |
|
f1of |
⊢ ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ⟶ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 30 |
28 29
|
syl |
⊢ ( 𝜑 → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ⟶ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 31 |
30
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) → ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ∈ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 32 |
|
f1ofo |
⊢ ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 33 |
28 32
|
syl |
⊢ ( 𝜑 → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 34 |
|
foelrn |
⊢ ( ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ∧ ℎ ∈ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) → ∃ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) |
| 35 |
33 34
|
sylan |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) → ∃ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) |
| 36 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∧ ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) |
| 37 |
36
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∧ ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ℎ = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ↔ ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ) ) |
| 38 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑀 ( 𝐷 Func 𝐸 ) 𝑁 ) |
| 39 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
| 40 |
17 8
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑍 ) ∈ ( Base ‘ 𝐷 ) ) |
| 41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 𝐹 ‘ 𝑍 ) ∈ ( Base ‘ 𝐷 ) ) |
| 42 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 𝐹 ‘ 𝑊 ) ∈ ( Base ‘ 𝐷 ) ) |
| 43 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝐴 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑍 ) ) ) |
| 44 |
16 1 2 12 8 9
|
funcf2 |
⊢ ( 𝜑 → ( 𝑍 𝐺 𝑊 ) : ( 𝑍 𝐻 𝑊 ) ⟶ ( ( 𝐹 ‘ 𝑍 ) 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) → ( 𝑍 𝐺 𝑊 ) : ( 𝑍 𝐻 𝑊 ) ⟶ ( ( 𝐹 ‘ 𝑍 ) 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) |
| 46 |
45
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑍 ) 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) |
| 47 |
15 2 4 5 38 39 41 42 43 46
|
funcco |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) = ( ( ( ( 𝐹 ‘ 𝑍 ) 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ) ( 〈 ( 𝑀 ‘ 𝑋 ) , ( 𝑀 ‘ ( 𝐹 ‘ 𝑍 ) ) 〉 ⚬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) ) ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝐴 ) ) ) |
| 48 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 𝑀 ‘ 𝑋 ) = 𝑌 ) |
| 49 |
16 12 24 14 8
|
cofu1a |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ 𝑍 ) ) = ( 𝐾 ‘ 𝑍 ) ) |
| 50 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑍 ) ) = ( 𝐾 ‘ 𝑍 ) ) |
| 51 |
48 50
|
opeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 〈 ( 𝑀 ‘ 𝑋 ) , ( 𝑀 ‘ ( 𝐹 ‘ 𝑍 ) ) 〉 = 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ) |
| 52 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) = ( 𝐾 ‘ 𝑊 ) ) |
| 53 |
51 52
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 〈 ( 𝑀 ‘ 𝑋 ) , ( 𝑀 ‘ ( 𝐹 ‘ 𝑍 ) ) 〉 ⚬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) ) = ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) ) |
| 54 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 55 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 〈 𝑀 , 𝑁 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) |
| 56 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 57 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐶 ) ) |
| 58 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) |
| 59 |
16 54 38 55 56 57 1 58
|
cofu2a |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( ( 𝐹 ‘ 𝑍 ) 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ) = ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ) |
| 60 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝐴 ) = 𝐵 ) |
| 61 |
53 59 60
|
oveq123d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( ( ( 𝐹 ‘ 𝑍 ) 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ) ( 〈 ( 𝑀 ‘ 𝑋 ) , ( 𝑀 ‘ ( 𝐹 ‘ 𝑍 ) ) 〉 ⚬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) ) ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝐴 ) ) = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ) |
| 62 |
47 61
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ) |
| 63 |
62
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ↔ ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ) ) |
| 64 |
|
f1of1 |
⊢ ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 65 |
28 64
|
syl |
⊢ ( 𝜑 → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 66 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 67 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) |
| 68 |
38
|
funcrcl2 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝐷 ∈ Cat ) |
| 69 |
15 2 4 68 39 41 42 43 46
|
catcocl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) |
| 70 |
|
f1fveq |
⊢ ( ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ∧ ( 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∧ ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ) → ( ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ↔ 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) |
| 71 |
66 67 69 70
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ↔ 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) |
| 72 |
63 71
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ↔ 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) |
| 73 |
72
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∧ ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ↔ 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) |
| 74 |
37 73
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∧ ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ℎ = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ↔ 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) |
| 75 |
74
|
reubidva |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∧ ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) → ( ∃! 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ℎ = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ↔ ∃! 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) |
| 76 |
31 35 75
|
ralxfrd2 |
⊢ ( 𝜑 → ( ∀ ℎ ∈ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ∃! 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ℎ = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ↔ ∀ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∃! 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) |