| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofu1a.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
cofu1a.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 3 |
|
cofu1a.k |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 4 |
|
cofu1a.m |
⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝑀 , 𝑁 〉 ) |
| 5 |
|
cofu1a.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
cofu2a.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
cofu2a.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 8 |
|
cofu2a.r |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 9 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 10 |
2 9
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 11 |
|
df-br |
⊢ ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 12 |
3 11
|
sylib |
⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 13 |
1 10 12 5 6 7 8
|
cofu2 |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) 𝑌 ) ‘ 𝑅 ) = ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) ‘ ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) ‘ 𝑅 ) ) ) |
| 14 |
4
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) = ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) ) |
| 15 |
10 12
|
cofucl |
⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ∈ ( 𝐶 Func 𝐸 ) ) |
| 16 |
4 15
|
eqeltrrd |
⊢ ( 𝜑 → 〈 𝑀 , 𝑁 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
| 17 |
|
df-br |
⊢ ( 𝑀 ( 𝐶 Func 𝐸 ) 𝑁 ↔ 〈 𝑀 , 𝑁 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
| 18 |
16 17
|
sylibr |
⊢ ( 𝜑 → 𝑀 ( 𝐶 Func 𝐸 ) 𝑁 ) |
| 19 |
18
|
func2nd |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑁 ) |
| 20 |
14 19
|
eqtrd |
⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) = 𝑁 ) |
| 21 |
20
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) 𝑌 ) = ( 𝑋 𝑁 𝑌 ) ) |
| 22 |
21
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) 𝑌 ) ‘ 𝑅 ) = ( ( 𝑋 𝑁 𝑌 ) ‘ 𝑅 ) ) |
| 23 |
3
|
func2nd |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐿 ) |
| 24 |
2
|
func1st |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 25 |
24
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 26 |
24
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 27 |
23 25 26
|
oveq123d |
⊢ ( 𝜑 → ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ) |
| 28 |
2
|
func2nd |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 29 |
28
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) = ( 𝑋 𝐺 𝑌 ) ) |
| 30 |
29
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) ‘ 𝑅 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) |
| 31 |
27 30
|
fveq12d |
⊢ ( 𝜑 → ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) ‘ ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) |
| 32 |
13 22 31
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑋 𝑁 𝑌 ) ‘ 𝑅 ) ) |