| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofu1a.b |
|- B = ( Base ` C ) |
| 2 |
|
cofu1a.f |
|- ( ph -> F ( C Func D ) G ) |
| 3 |
|
cofu1a.k |
|- ( ph -> K ( D Func E ) L ) |
| 4 |
|
cofu1a.m |
|- ( ph -> ( <. K , L >. o.func <. F , G >. ) = <. M , N >. ) |
| 5 |
|
cofu1a.x |
|- ( ph -> X e. B ) |
| 6 |
|
cofu2a.y |
|- ( ph -> Y e. B ) |
| 7 |
|
cofu2a.h |
|- H = ( Hom ` C ) |
| 8 |
|
cofu2a.r |
|- ( ph -> R e. ( X H Y ) ) |
| 9 |
|
df-br |
|- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
| 10 |
2 9
|
sylib |
|- ( ph -> <. F , G >. e. ( C Func D ) ) |
| 11 |
|
df-br |
|- ( K ( D Func E ) L <-> <. K , L >. e. ( D Func E ) ) |
| 12 |
3 11
|
sylib |
|- ( ph -> <. K , L >. e. ( D Func E ) ) |
| 13 |
1 10 12 5 6 7 8
|
cofu2 |
|- ( ph -> ( ( X ( 2nd ` ( <. K , L >. o.func <. F , G >. ) ) Y ) ` R ) = ( ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) ` ( ( X ( 2nd ` <. F , G >. ) Y ) ` R ) ) ) |
| 14 |
4
|
fveq2d |
|- ( ph -> ( 2nd ` ( <. K , L >. o.func <. F , G >. ) ) = ( 2nd ` <. M , N >. ) ) |
| 15 |
10 12
|
cofucl |
|- ( ph -> ( <. K , L >. o.func <. F , G >. ) e. ( C Func E ) ) |
| 16 |
4 15
|
eqeltrrd |
|- ( ph -> <. M , N >. e. ( C Func E ) ) |
| 17 |
|
df-br |
|- ( M ( C Func E ) N <-> <. M , N >. e. ( C Func E ) ) |
| 18 |
16 17
|
sylibr |
|- ( ph -> M ( C Func E ) N ) |
| 19 |
18
|
func2nd |
|- ( ph -> ( 2nd ` <. M , N >. ) = N ) |
| 20 |
14 19
|
eqtrd |
|- ( ph -> ( 2nd ` ( <. K , L >. o.func <. F , G >. ) ) = N ) |
| 21 |
20
|
oveqd |
|- ( ph -> ( X ( 2nd ` ( <. K , L >. o.func <. F , G >. ) ) Y ) = ( X N Y ) ) |
| 22 |
21
|
fveq1d |
|- ( ph -> ( ( X ( 2nd ` ( <. K , L >. o.func <. F , G >. ) ) Y ) ` R ) = ( ( X N Y ) ` R ) ) |
| 23 |
3
|
func2nd |
|- ( ph -> ( 2nd ` <. K , L >. ) = L ) |
| 24 |
2
|
func1st |
|- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 25 |
24
|
fveq1d |
|- ( ph -> ( ( 1st ` <. F , G >. ) ` X ) = ( F ` X ) ) |
| 26 |
24
|
fveq1d |
|- ( ph -> ( ( 1st ` <. F , G >. ) ` Y ) = ( F ` Y ) ) |
| 27 |
23 25 26
|
oveq123d |
|- ( ph -> ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) = ( ( F ` X ) L ( F ` Y ) ) ) |
| 28 |
2
|
func2nd |
|- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
| 29 |
28
|
oveqd |
|- ( ph -> ( X ( 2nd ` <. F , G >. ) Y ) = ( X G Y ) ) |
| 30 |
29
|
fveq1d |
|- ( ph -> ( ( X ( 2nd ` <. F , G >. ) Y ) ` R ) = ( ( X G Y ) ` R ) ) |
| 31 |
27 30
|
fveq12d |
|- ( ph -> ( ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) ` ( ( X ( 2nd ` <. F , G >. ) Y ) ` R ) ) = ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` R ) ) ) |
| 32 |
13 22 31
|
3eqtr3rd |
|- ( ph -> ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` R ) ) = ( ( X N Y ) ` R ) ) |