| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uptrlem1.h |
|- H = ( Hom ` C ) |
| 2 |
|
uptrlem1.i |
|- I = ( Hom ` D ) |
| 3 |
|
uptrlem1.j |
|- J = ( Hom ` E ) |
| 4 |
|
uptrlem1.d |
|- .xb = ( comp ` D ) |
| 5 |
|
uptrlem1.e |
|- .o. = ( comp ` E ) |
| 6 |
|
uptrlem1.x |
|- ( ph -> X e. ( Base ` D ) ) |
| 7 |
|
uptrlem1.y |
|- ( ph -> ( M ` X ) = Y ) |
| 8 |
|
uptrlem1.z |
|- ( ph -> Z e. ( Base ` C ) ) |
| 9 |
|
uptrlem1.w |
|- ( ph -> W e. ( Base ` C ) ) |
| 10 |
|
uptrlem1.a |
|- ( ph -> A e. ( X I ( F ` Z ) ) ) |
| 11 |
|
uptrlem1.b |
|- ( ph -> ( ( X N ( F ` Z ) ) ` A ) = B ) |
| 12 |
|
uptrlem1.f |
|- ( ph -> F ( C Func D ) G ) |
| 13 |
|
uptrlem1.m |
|- ( ph -> M ( ( D Full E ) i^i ( D Faith E ) ) N ) |
| 14 |
|
uptrlem1.k |
|- ( ph -> ( <. M , N >. o.func <. F , G >. ) = <. K , L >. ) |
| 15 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 16 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 17 |
16 15 12
|
funcf1 |
|- ( ph -> F : ( Base ` C ) --> ( Base ` D ) ) |
| 18 |
17 9
|
ffvelcdmd |
|- ( ph -> ( F ` W ) e. ( Base ` D ) ) |
| 19 |
15 2 3 13 6 18
|
ffthf1o |
|- ( ph -> ( X N ( F ` W ) ) : ( X I ( F ` W ) ) -1-1-onto-> ( ( M ` X ) J ( M ` ( F ` W ) ) ) ) |
| 20 |
|
inss1 |
|- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Full E ) |
| 21 |
|
fullfunc |
|- ( D Full E ) C_ ( D Func E ) |
| 22 |
20 21
|
sstri |
|- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Func E ) |
| 23 |
22
|
ssbri |
|- ( M ( ( D Full E ) i^i ( D Faith E ) ) N -> M ( D Func E ) N ) |
| 24 |
13 23
|
syl |
|- ( ph -> M ( D Func E ) N ) |
| 25 |
16 12 24 14 9
|
cofu1a |
|- ( ph -> ( M ` ( F ` W ) ) = ( K ` W ) ) |
| 26 |
7 25
|
oveq12d |
|- ( ph -> ( ( M ` X ) J ( M ` ( F ` W ) ) ) = ( Y J ( K ` W ) ) ) |
| 27 |
26
|
f1oeq3d |
|- ( ph -> ( ( X N ( F ` W ) ) : ( X I ( F ` W ) ) -1-1-onto-> ( ( M ` X ) J ( M ` ( F ` W ) ) ) <-> ( X N ( F ` W ) ) : ( X I ( F ` W ) ) -1-1-onto-> ( Y J ( K ` W ) ) ) ) |
| 28 |
19 27
|
mpbid |
|- ( ph -> ( X N ( F ` W ) ) : ( X I ( F ` W ) ) -1-1-onto-> ( Y J ( K ` W ) ) ) |
| 29 |
|
f1of |
|- ( ( X N ( F ` W ) ) : ( X I ( F ` W ) ) -1-1-onto-> ( Y J ( K ` W ) ) -> ( X N ( F ` W ) ) : ( X I ( F ` W ) ) --> ( Y J ( K ` W ) ) ) |
| 30 |
28 29
|
syl |
|- ( ph -> ( X N ( F ` W ) ) : ( X I ( F ` W ) ) --> ( Y J ( K ` W ) ) ) |
| 31 |
30
|
ffvelcdmda |
|- ( ( ph /\ g e. ( X I ( F ` W ) ) ) -> ( ( X N ( F ` W ) ) ` g ) e. ( Y J ( K ` W ) ) ) |
| 32 |
|
f1ofo |
|- ( ( X N ( F ` W ) ) : ( X I ( F ` W ) ) -1-1-onto-> ( Y J ( K ` W ) ) -> ( X N ( F ` W ) ) : ( X I ( F ` W ) ) -onto-> ( Y J ( K ` W ) ) ) |
| 33 |
28 32
|
syl |
|- ( ph -> ( X N ( F ` W ) ) : ( X I ( F ` W ) ) -onto-> ( Y J ( K ` W ) ) ) |
| 34 |
|
foelrn |
|- ( ( ( X N ( F ` W ) ) : ( X I ( F ` W ) ) -onto-> ( Y J ( K ` W ) ) /\ h e. ( Y J ( K ` W ) ) ) -> E. g e. ( X I ( F ` W ) ) h = ( ( X N ( F ` W ) ) ` g ) ) |
| 35 |
33 34
|
sylan |
|- ( ( ph /\ h e. ( Y J ( K ` W ) ) ) -> E. g e. ( X I ( F ` W ) ) h = ( ( X N ( F ` W ) ) ` g ) ) |
| 36 |
|
simpl3 |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> h = ( ( X N ( F ` W ) ) ` g ) ) |
| 37 |
36
|
eqeq1d |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) ) |
| 38 |
24
|
ad2antrr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> M ( D Func E ) N ) |
| 39 |
6
|
ad2antrr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> X e. ( Base ` D ) ) |
| 40 |
17 8
|
ffvelcdmd |
|- ( ph -> ( F ` Z ) e. ( Base ` D ) ) |
| 41 |
40
|
ad2antrr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( F ` Z ) e. ( Base ` D ) ) |
| 42 |
18
|
ad2antrr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( F ` W ) e. ( Base ` D ) ) |
| 43 |
10
|
ad2antrr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> A e. ( X I ( F ` Z ) ) ) |
| 44 |
16 1 2 12 8 9
|
funcf2 |
|- ( ph -> ( Z G W ) : ( Z H W ) --> ( ( F ` Z ) I ( F ` W ) ) ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ g e. ( X I ( F ` W ) ) ) -> ( Z G W ) : ( Z H W ) --> ( ( F ` Z ) I ( F ` W ) ) ) |
| 46 |
45
|
ffvelcdmda |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( Z G W ) ` k ) e. ( ( F ` Z ) I ( F ` W ) ) ) |
| 47 |
15 2 4 5 38 39 41 42 43 46
|
funcco |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) = ( ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) ( ( X N ( F ` Z ) ) ` A ) ) ) |
| 48 |
7
|
ad2antrr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( M ` X ) = Y ) |
| 49 |
16 12 24 14 8
|
cofu1a |
|- ( ph -> ( M ` ( F ` Z ) ) = ( K ` Z ) ) |
| 50 |
49
|
ad2antrr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( M ` ( F ` Z ) ) = ( K ` Z ) ) |
| 51 |
48 50
|
opeq12d |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> <. ( M ` X ) , ( M ` ( F ` Z ) ) >. = <. Y , ( K ` Z ) >. ) |
| 52 |
25
|
ad2antrr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( M ` ( F ` W ) ) = ( K ` W ) ) |
| 53 |
51 52
|
oveq12d |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) = ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) ) |
| 54 |
12
|
ad2antrr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> F ( C Func D ) G ) |
| 55 |
14
|
ad2antrr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( <. M , N >. o.func <. F , G >. ) = <. K , L >. ) |
| 56 |
8
|
ad2antrr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> Z e. ( Base ` C ) ) |
| 57 |
9
|
ad2antrr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> W e. ( Base ` C ) ) |
| 58 |
|
simpr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> k e. ( Z H W ) ) |
| 59 |
16 54 38 55 56 57 1 58
|
cofu2a |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) = ( ( Z L W ) ` k ) ) |
| 60 |
11
|
ad2antrr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` Z ) ) ` A ) = B ) |
| 61 |
53 59 60
|
oveq123d |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) ( ( X N ( F ` Z ) ) ` A ) ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) |
| 62 |
47 61
|
eqtrd |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) |
| 63 |
62
|
eqeq2d |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) <-> ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) ) |
| 64 |
|
f1of1 |
|- ( ( X N ( F ` W ) ) : ( X I ( F ` W ) ) -1-1-onto-> ( Y J ( K ` W ) ) -> ( X N ( F ` W ) ) : ( X I ( F ` W ) ) -1-1-> ( Y J ( K ` W ) ) ) |
| 65 |
28 64
|
syl |
|- ( ph -> ( X N ( F ` W ) ) : ( X I ( F ` W ) ) -1-1-> ( Y J ( K ` W ) ) ) |
| 66 |
65
|
ad2antrr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( X N ( F ` W ) ) : ( X I ( F ` W ) ) -1-1-> ( Y J ( K ` W ) ) ) |
| 67 |
|
simplr |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> g e. ( X I ( F ` W ) ) ) |
| 68 |
38
|
funcrcl2 |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> D e. Cat ) |
| 69 |
15 2 4 68 39 41 42 43 46
|
catcocl |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) e. ( X I ( F ` W ) ) ) |
| 70 |
|
f1fveq |
|- ( ( ( X N ( F ` W ) ) : ( X I ( F ` W ) ) -1-1-> ( Y J ( K ` W ) ) /\ ( g e. ( X I ( F ` W ) ) /\ ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) e. ( X I ( F ` W ) ) ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) |
| 71 |
66 67 69 70
|
syl12anc |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) |
| 72 |
63 71
|
bitr3d |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) |
| 73 |
72
|
3adantl3 |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) |
| 74 |
37 73
|
bitrd |
|- ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) |
| 75 |
74
|
reubidva |
|- ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) -> ( E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) |
| 76 |
31 35 75
|
ralxfrd2 |
|- ( ph -> ( A. h e. ( Y J ( K ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> A. g e. ( X I ( F ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) |