| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uptrlem1.h |
|- H = ( Hom ` C ) |
| 2 |
|
uptrlem1.i |
|- I = ( Hom ` D ) |
| 3 |
|
uptrlem1.j |
|- J = ( Hom ` E ) |
| 4 |
|
uptrlem1.d |
|- .xb = ( comp ` D ) |
| 5 |
|
uptrlem1.e |
|- .o. = ( comp ` E ) |
| 6 |
|
uptrlem2.a |
|- A = ( Base ` C ) |
| 7 |
|
uptrlem2.b |
|- B = ( Base ` D ) |
| 8 |
|
uptrlem2.x |
|- ( ph -> X e. B ) |
| 9 |
|
uptrlem2.y |
|- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
| 10 |
|
uptrlem2.z |
|- ( ph -> Z e. A ) |
| 11 |
|
uptrlem2.w |
|- ( ph -> W e. A ) |
| 12 |
|
uptrlem2.m |
|- ( ph -> M e. ( X I ( ( 1st ` F ) ` Z ) ) ) |
| 13 |
|
uptrlem2.n |
|- ( ph -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` M ) = N ) |
| 14 |
|
uptrlem2.f |
|- ( ph -> F e. ( C Func D ) ) |
| 15 |
|
uptrlem2.k |
|- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 16 |
|
uptrlem2.g |
|- ( ph -> ( K o.func F ) = G ) |
| 17 |
8 7
|
eleqtrdi |
|- ( ph -> X e. ( Base ` D ) ) |
| 18 |
10 6
|
eleqtrdi |
|- ( ph -> Z e. ( Base ` C ) ) |
| 19 |
11 6
|
eleqtrdi |
|- ( ph -> W e. ( Base ` C ) ) |
| 20 |
14
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 21 |
|
relfull |
|- Rel ( D Full E ) |
| 22 |
|
relin1 |
|- ( Rel ( D Full E ) -> Rel ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 23 |
21 22
|
ax-mp |
|- Rel ( ( D Full E ) i^i ( D Faith E ) ) |
| 24 |
|
1st2nd |
|- ( ( Rel ( ( D Full E ) i^i ( D Faith E ) ) /\ K e. ( ( D Full E ) i^i ( D Faith E ) ) ) -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 25 |
23 15 24
|
sylancr |
|- ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 26 |
25 15
|
eqeltrrd |
|- ( ph -> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 27 |
|
df-br |
|- ( ( 1st ` K ) ( ( D Full E ) i^i ( D Faith E ) ) ( 2nd ` K ) <-> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 28 |
26 27
|
sylibr |
|- ( ph -> ( 1st ` K ) ( ( D Full E ) i^i ( D Faith E ) ) ( 2nd ` K ) ) |
| 29 |
|
inss1 |
|- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Full E ) |
| 30 |
|
fullfunc |
|- ( D Full E ) C_ ( D Func E ) |
| 31 |
29 30
|
sstri |
|- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Func E ) |
| 32 |
31 15
|
sselid |
|- ( ph -> K e. ( D Func E ) ) |
| 33 |
14 32
|
cofu1st2nd |
|- ( ph -> ( K o.func F ) = ( <. ( 1st ` K ) , ( 2nd ` K ) >. o.func <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 34 |
|
relfunc |
|- Rel ( C Func E ) |
| 35 |
14 32
|
cofucl |
|- ( ph -> ( K o.func F ) e. ( C Func E ) ) |
| 36 |
16 35
|
eqeltrrd |
|- ( ph -> G e. ( C Func E ) ) |
| 37 |
|
1st2nd |
|- ( ( Rel ( C Func E ) /\ G e. ( C Func E ) ) -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 38 |
34 36 37
|
sylancr |
|- ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 39 |
16 33 38
|
3eqtr3d |
|- ( ph -> ( <. ( 1st ` K ) , ( 2nd ` K ) >. o.func <. ( 1st ` F ) , ( 2nd ` F ) >. ) = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 40 |
1 2 3 4 5 17 9 18 19 12 13 20 28 39
|
uptrlem1 |
|- ( ph -> ( A. h e. ( Y J ( ( 1st ` G ) ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z ( 2nd ` G ) W ) ` k ) ( <. Y , ( ( 1st ` G ) ` Z ) >. .o. ( ( 1st ` G ) ` W ) ) N ) <-> A. g e. ( X I ( ( 1st ` F ) ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z ( 2nd ` F ) W ) ` k ) ( <. X , ( ( 1st ` F ) ` Z ) >. .xb ( ( 1st ` F ) ` W ) ) M ) ) ) |