Metamath Proof Explorer


Theorem uptrlem2

Description: Lemma for uptr . (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses uptrlem1.h 𝐻 = ( Hom ‘ 𝐶 )
uptrlem1.i 𝐼 = ( Hom ‘ 𝐷 )
uptrlem1.j 𝐽 = ( Hom ‘ 𝐸 )
uptrlem1.d = ( comp ‘ 𝐷 )
uptrlem1.e = ( comp ‘ 𝐸 )
uptrlem2.a 𝐴 = ( Base ‘ 𝐶 )
uptrlem2.b 𝐵 = ( Base ‘ 𝐷 )
uptrlem2.x ( 𝜑𝑋𝐵 )
uptrlem2.y ( 𝜑 → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
uptrlem2.z ( 𝜑𝑍𝐴 )
uptrlem2.w ( 𝜑𝑊𝐴 )
uptrlem2.m ( 𝜑𝑀 ∈ ( 𝑋 𝐼 ( ( 1st𝐹 ) ‘ 𝑍 ) ) )
uptrlem2.n ( 𝜑 → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 )
uptrlem2.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
uptrlem2.k ( 𝜑𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
uptrlem2.g ( 𝜑 → ( 𝐾func 𝐹 ) = 𝐺 )
Assertion uptrlem2 ( 𝜑 → ( ∀ ∈ ( 𝑌 𝐽 ( ( 1st𝐺 ) ‘ 𝑊 ) ) ∃! 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) = ( ( ( 𝑍 ( 2nd𝐺 ) 𝑊 ) ‘ 𝑘 ) ( ⟨ 𝑌 , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( ( 1st𝐺 ) ‘ 𝑊 ) ) 𝑁 ) ↔ ∀ 𝑔 ∈ ( 𝑋 𝐼 ( ( 1st𝐹 ) ‘ 𝑊 ) ) ∃! 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) 𝑔 = ( ( ( 𝑍 ( 2nd𝐹 ) 𝑊 ) ‘ 𝑘 ) ( ⟨ 𝑋 , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( ( 1st𝐹 ) ‘ 𝑊 ) ) 𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 uptrlem1.h 𝐻 = ( Hom ‘ 𝐶 )
2 uptrlem1.i 𝐼 = ( Hom ‘ 𝐷 )
3 uptrlem1.j 𝐽 = ( Hom ‘ 𝐸 )
4 uptrlem1.d = ( comp ‘ 𝐷 )
5 uptrlem1.e = ( comp ‘ 𝐸 )
6 uptrlem2.a 𝐴 = ( Base ‘ 𝐶 )
7 uptrlem2.b 𝐵 = ( Base ‘ 𝐷 )
8 uptrlem2.x ( 𝜑𝑋𝐵 )
9 uptrlem2.y ( 𝜑 → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
10 uptrlem2.z ( 𝜑𝑍𝐴 )
11 uptrlem2.w ( 𝜑𝑊𝐴 )
12 uptrlem2.m ( 𝜑𝑀 ∈ ( 𝑋 𝐼 ( ( 1st𝐹 ) ‘ 𝑍 ) ) )
13 uptrlem2.n ( 𝜑 → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 )
14 uptrlem2.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
15 uptrlem2.k ( 𝜑𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
16 uptrlem2.g ( 𝜑 → ( 𝐾func 𝐹 ) = 𝐺 )
17 8 7 eleqtrdi ( 𝜑𝑋 ∈ ( Base ‘ 𝐷 ) )
18 10 6 eleqtrdi ( 𝜑𝑍 ∈ ( Base ‘ 𝐶 ) )
19 11 6 eleqtrdi ( 𝜑𝑊 ∈ ( Base ‘ 𝐶 ) )
20 14 func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
21 relfull Rel ( 𝐷 Full 𝐸 )
22 relin1 ( Rel ( 𝐷 Full 𝐸 ) → Rel ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
23 21 22 ax-mp Rel ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) )
24 1st2nd ( ( Rel ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ∧ 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) → 𝐾 = ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ )
25 23 15 24 sylancr ( 𝜑𝐾 = ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ )
26 25 15 eqeltrrd ( 𝜑 → ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
27 df-br ( ( 1st𝐾 ) ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ( 2nd𝐾 ) ↔ ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
28 26 27 sylibr ( 𝜑 → ( 1st𝐾 ) ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ( 2nd𝐾 ) )
29 inss1 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ⊆ ( 𝐷 Full 𝐸 )
30 fullfunc ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 )
31 29 30 sstri ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ⊆ ( 𝐷 Func 𝐸 )
32 31 15 sselid ( 𝜑𝐾 ∈ ( 𝐷 Func 𝐸 ) )
33 14 32 cofu1st2nd ( 𝜑 → ( 𝐾func 𝐹 ) = ( ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ∘func ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ) )
34 relfunc Rel ( 𝐶 Func 𝐸 )
35 14 32 cofucl ( 𝜑 → ( 𝐾func 𝐹 ) ∈ ( 𝐶 Func 𝐸 ) )
36 16 35 eqeltrrd ( 𝜑𝐺 ∈ ( 𝐶 Func 𝐸 ) )
37 1st2nd ( ( Rel ( 𝐶 Func 𝐸 ) ∧ 𝐺 ∈ ( 𝐶 Func 𝐸 ) ) → 𝐺 = ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ )
38 34 36 37 sylancr ( 𝜑𝐺 = ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ )
39 16 33 38 3eqtr3d ( 𝜑 → ( ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ∘func ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ) = ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ )
40 1 2 3 4 5 17 9 18 19 12 13 20 28 39 uptrlem1 ( 𝜑 → ( ∀ ∈ ( 𝑌 𝐽 ( ( 1st𝐺 ) ‘ 𝑊 ) ) ∃! 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) = ( ( ( 𝑍 ( 2nd𝐺 ) 𝑊 ) ‘ 𝑘 ) ( ⟨ 𝑌 , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( ( 1st𝐺 ) ‘ 𝑊 ) ) 𝑁 ) ↔ ∀ 𝑔 ∈ ( 𝑋 𝐼 ( ( 1st𝐹 ) ‘ 𝑊 ) ) ∃! 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) 𝑔 = ( ( ( 𝑍 ( 2nd𝐹 ) 𝑊 ) ‘ 𝑘 ) ( ⟨ 𝑋 , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( ( 1st𝐹 ) ‘ 𝑊 ) ) 𝑀 ) ) )