Metamath Proof Explorer


Theorem cofu1a

Description: Value of the object part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses cofu1a.b
|- B = ( Base ` C )
cofu1a.f
|- ( ph -> F ( C Func D ) G )
cofu1a.k
|- ( ph -> K ( D Func E ) L )
cofu1a.m
|- ( ph -> ( <. K , L >. o.func <. F , G >. ) = <. M , N >. )
cofu1a.x
|- ( ph -> X e. B )
Assertion cofu1a
|- ( ph -> ( K ` ( F ` X ) ) = ( M ` X ) )

Proof

Step Hyp Ref Expression
1 cofu1a.b
 |-  B = ( Base ` C )
2 cofu1a.f
 |-  ( ph -> F ( C Func D ) G )
3 cofu1a.k
 |-  ( ph -> K ( D Func E ) L )
4 cofu1a.m
 |-  ( ph -> ( <. K , L >. o.func <. F , G >. ) = <. M , N >. )
5 cofu1a.x
 |-  ( ph -> X e. B )
6 df-br
 |-  ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) )
7 2 6 sylib
 |-  ( ph -> <. F , G >. e. ( C Func D ) )
8 df-br
 |-  ( K ( D Func E ) L <-> <. K , L >. e. ( D Func E ) )
9 3 8 sylib
 |-  ( ph -> <. K , L >. e. ( D Func E ) )
10 1 7 9 5 cofu1
 |-  ( ph -> ( ( 1st ` ( <. K , L >. o.func <. F , G >. ) ) ` X ) = ( ( 1st ` <. K , L >. ) ` ( ( 1st ` <. F , G >. ) ` X ) ) )
11 4 fveq2d
 |-  ( ph -> ( 1st ` ( <. K , L >. o.func <. F , G >. ) ) = ( 1st ` <. M , N >. ) )
12 7 9 cofucl
 |-  ( ph -> ( <. K , L >. o.func <. F , G >. ) e. ( C Func E ) )
13 4 12 eqeltrrd
 |-  ( ph -> <. M , N >. e. ( C Func E ) )
14 df-br
 |-  ( M ( C Func E ) N <-> <. M , N >. e. ( C Func E ) )
15 13 14 sylibr
 |-  ( ph -> M ( C Func E ) N )
16 15 func1st
 |-  ( ph -> ( 1st ` <. M , N >. ) = M )
17 11 16 eqtrd
 |-  ( ph -> ( 1st ` ( <. K , L >. o.func <. F , G >. ) ) = M )
18 17 fveq1d
 |-  ( ph -> ( ( 1st ` ( <. K , L >. o.func <. F , G >. ) ) ` X ) = ( M ` X ) )
19 3 func1st
 |-  ( ph -> ( 1st ` <. K , L >. ) = K )
20 2 func1st
 |-  ( ph -> ( 1st ` <. F , G >. ) = F )
21 20 fveq1d
 |-  ( ph -> ( ( 1st ` <. F , G >. ) ` X ) = ( F ` X ) )
22 19 21 fveq12d
 |-  ( ph -> ( ( 1st ` <. K , L >. ) ` ( ( 1st ` <. F , G >. ) ` X ) ) = ( K ` ( F ` X ) ) )
23 10 18 22 3eqtr3rd
 |-  ( ph -> ( K ` ( F ` X ) ) = ( M ` X ) )