Metamath Proof Explorer


Theorem uptrai

Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses uptra.y ( 𝜑 → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
uptra.k ( 𝜑𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
uptra.g ( 𝜑 → ( 𝐾func 𝐹 ) = 𝐺 )
uptrai.n ( 𝜑 → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 )
uptrai.z ( 𝜑𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 )
Assertion uptrai ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 )

Proof

Step Hyp Ref Expression
1 uptra.y ( 𝜑 → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
2 uptra.k ( 𝜑𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
3 uptra.g ( 𝜑 → ( 𝐾func 𝐹 ) = 𝐺 )
4 uptrai.n ( 𝜑 → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 )
5 uptrai.z ( 𝜑𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 )
6 1 adantr ( ( 𝜑𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
7 2 adantr ( ( 𝜑𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
8 3 adantr ( ( 𝜑𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( 𝐾func 𝐹 ) = 𝐺 )
9 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
10 simpr ( ( 𝜑𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 )
11 10 up1st2nd ( ( 𝜑𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑍 ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 )
12 11 9 uprcl3 ( ( 𝜑𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑋 ∈ ( Base ‘ 𝐷 ) )
13 10 uprcl2a ( ( 𝜑𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) )
14 4 adantr ( ( 𝜑𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 )
15 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
16 11 15 uprcl5 ( ( 𝜑𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑀 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) )
17 6 7 8 9 12 13 14 15 16 uptra ( ( 𝜑𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) )
18 5 17 mpdan ( 𝜑 → ( 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) )
19 5 18 mpbid ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 )