| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uptra.y |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) |
| 2 |
|
uptra.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 3 |
|
uptra.g |
⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) |
| 4 |
|
uptrai.n |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) |
| 5 |
|
uptrai.z |
⊢ ( 𝜑 → 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) |
| 7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) |
| 11 |
10
|
up1st2nd |
⊢ ( ( 𝜑 ∧ 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑍 ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) |
| 12 |
11 9
|
uprcl3 |
⊢ ( ( 𝜑 ∧ 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
| 13 |
10
|
uprcl2a |
⊢ ( ( 𝜑 ∧ 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) |
| 15 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 16 |
11 15
|
uprcl5 |
⊢ ( ( 𝜑 ∧ 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑀 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑍 ) ) ) |
| 17 |
6 7 8 9 12 13 14 15 16
|
uptra |
⊢ ( ( 𝜑 ∧ 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ 𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) ) |
| 18 |
5 17
|
mpdan |
⊢ ( 𝜑 → ( 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ 𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) ) |
| 19 |
5 18
|
mpbid |
⊢ ( 𝜑 → 𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) |