| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uobffth.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 2 |
|
uobffth.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 3 |
|
uobffth.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 4 |
|
uobffth.g |
⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) |
| 5 |
|
uobffth.y |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) |
| 6 |
|
uobffth.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 7 |
|
19.42v |
⊢ ( ∃ 𝑚 ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) ↔ ( 𝜑 ∧ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) ) |
| 8 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ∈ V ) |
| 9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) |
| 10 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) |
| 12 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) = ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) |
| 14 |
9 10 11 12 13
|
uptrai |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) |
| 15 |
|
breq2 |
⊢ ( 𝑛 = ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) → ( 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ↔ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) ) |
| 16 |
8 14 15
|
spcedv |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) |
| 17 |
16
|
exlimiv |
⊢ ( ∃ 𝑚 ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) |
| 18 |
7 17
|
sylbir |
⊢ ( ( 𝜑 ∧ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) |
| 19 |
|
19.42v |
⊢ ( ∃ 𝑛 ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) ↔ ( 𝜑 ∧ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) ) |
| 20 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ◡ ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ∈ V ) |
| 21 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) |
| 22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 23 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) |
| 24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝑋 ∈ 𝐵 ) |
| 25 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 26 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ◡ ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) = ( ◡ ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) |
| 27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) |
| 28 |
21 22 23 1 24 25 26 27
|
uptrar |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ( ◡ ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) |
| 29 |
|
breq2 |
⊢ ( 𝑚 = ( ◡ ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) → ( 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ↔ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ( ◡ ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) ) |
| 30 |
20 28 29
|
spcedv |
⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) |
| 31 |
30
|
exlimiv |
⊢ ( ∃ 𝑛 ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) |
| 32 |
19 31
|
sylbir |
⊢ ( ( 𝜑 ∧ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) |
| 33 |
18 32
|
impbida |
⊢ ( 𝜑 → ( ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) ) |
| 34 |
|
relup |
⊢ Rel ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) |
| 35 |
|
releldmb |
⊢ ( Rel ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) → ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) ) |
| 36 |
34 35
|
ax-mp |
⊢ ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) |
| 37 |
|
relup |
⊢ Rel ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) |
| 38 |
|
releldmb |
⊢ ( Rel ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) → ( 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) ) |
| 39 |
37 38
|
ax-mp |
⊢ ( 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) |
| 40 |
33 36 39
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) ) |
| 41 |
40
|
eqrdv |
⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |