| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uobffth.b |
|- B = ( Base ` D ) |
| 2 |
|
uobffth.x |
|- ( ph -> X e. B ) |
| 3 |
|
uobffth.f |
|- ( ph -> F e. ( C Func D ) ) |
| 4 |
|
uobffth.g |
|- ( ph -> ( K o.func F ) = G ) |
| 5 |
|
uobffth.y |
|- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
| 6 |
|
uobffth.k |
|- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 7 |
|
19.42v |
|- ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) <-> ( ph /\ E. m z ( F ( C UP D ) X ) m ) ) |
| 8 |
|
fvexd |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) e. _V ) |
| 9 |
5
|
adantr |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( 1st ` K ) ` X ) = Y ) |
| 10 |
6
|
adantr |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 11 |
4
|
adantr |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( K o.func F ) = G ) |
| 12 |
|
eqidd |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) |
| 13 |
|
simpr |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( F ( C UP D ) X ) m ) |
| 14 |
9 10 11 12 13
|
uptrai |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) |
| 15 |
|
breq2 |
|- ( n = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) -> ( z ( G ( C UP E ) Y ) n <-> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) ) |
| 16 |
8 14 15
|
spcedv |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) |
| 17 |
16
|
exlimiv |
|- ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) |
| 18 |
7 17
|
sylbir |
|- ( ( ph /\ E. m z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) |
| 19 |
|
19.42v |
|- ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) <-> ( ph /\ E. n z ( G ( C UP E ) Y ) n ) ) |
| 20 |
|
fvexd |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) e. _V ) |
| 21 |
5
|
adantr |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( ( 1st ` K ) ` X ) = Y ) |
| 22 |
6
|
adantr |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 23 |
4
|
adantr |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( K o.func F ) = G ) |
| 24 |
2
|
adantr |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> X e. B ) |
| 25 |
3
|
adantr |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> F e. ( C Func D ) ) |
| 26 |
|
eqidd |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) = ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) |
| 27 |
|
simpr |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( G ( C UP E ) Y ) n ) |
| 28 |
21 22 23 1 24 25 26 27
|
uptrar |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( F ( C UP D ) X ) ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) |
| 29 |
|
breq2 |
|- ( m = ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) -> ( z ( F ( C UP D ) X ) m <-> z ( F ( C UP D ) X ) ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) ) |
| 30 |
20 28 29
|
spcedv |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) |
| 31 |
30
|
exlimiv |
|- ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) |
| 32 |
19 31
|
sylbir |
|- ( ( ph /\ E. n z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) |
| 33 |
18 32
|
impbida |
|- ( ph -> ( E. m z ( F ( C UP D ) X ) m <-> E. n z ( G ( C UP E ) Y ) n ) ) |
| 34 |
|
relup |
|- Rel ( F ( C UP D ) X ) |
| 35 |
|
releldmb |
|- ( Rel ( F ( C UP D ) X ) -> ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) ) |
| 36 |
34 35
|
ax-mp |
|- ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) |
| 37 |
|
relup |
|- Rel ( G ( C UP E ) Y ) |
| 38 |
|
releldmb |
|- ( Rel ( G ( C UP E ) Y ) -> ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) ) |
| 39 |
37 38
|
ax-mp |
|- ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) |
| 40 |
33 36 39
|
3bitr4g |
|- ( ph -> ( z e. dom ( F ( C UP D ) X ) <-> z e. dom ( G ( C UP E ) Y ) ) ) |
| 41 |
40
|
eqrdv |
|- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |