Metamath Proof Explorer


Theorem uobeqw

Description: If a full functor (in fact, a full embedding) is a section of a fully faithful functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses uobeq.b 𝐵 = ( Base ‘ 𝐷 )
uobeq.i 𝐼 = ( idfunc𝐷 )
uobeq.x ( 𝜑𝑋𝐵 )
uobeq.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
uobeq.k ( 𝜑𝐾 ∈ ( 𝐷 Full 𝐸 ) )
uobeq.g ( 𝜑 → ( 𝐾func 𝐹 ) = 𝐺 )
uobeq.y ( 𝜑 → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
uobeq.n ( 𝜑 → ( 𝐿func 𝐾 ) = 𝐼 )
uobeqw.l ( 𝜑𝐿 ∈ ( ( 𝐸 Full 𝐷 ) ∩ ( 𝐸 Faith 𝐷 ) ) )
Assertion uobeqw ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) )

Proof

Step Hyp Ref Expression
1 uobeq.b 𝐵 = ( Base ‘ 𝐷 )
2 uobeq.i 𝐼 = ( idfunc𝐷 )
3 uobeq.x ( 𝜑𝑋𝐵 )
4 uobeq.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
5 uobeq.k ( 𝜑𝐾 ∈ ( 𝐷 Full 𝐸 ) )
6 uobeq.g ( 𝜑 → ( 𝐾func 𝐹 ) = 𝐺 )
7 uobeq.y ( 𝜑 → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
8 uobeq.n ( 𝜑 → ( 𝐿func 𝐾 ) = 𝐼 )
9 uobeqw.l ( 𝜑𝐿 ∈ ( ( 𝐸 Full 𝐷 ) ∩ ( 𝐸 Faith 𝐷 ) ) )
10 19.42v ( ∃ 𝑚 ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) ↔ ( 𝜑 ∧ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) )
11 fvexd ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ∈ V )
12 7 adantr ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
13 relfunc Rel ( 𝐷 Func 𝐸 )
14 fullfunc ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 )
15 14 5 sselid ( 𝜑𝐾 ∈ ( 𝐷 Func 𝐸 ) )
16 1st2nd ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) → 𝐾 = ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ )
17 13 15 16 sylancr ( 𝜑𝐾 = ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ )
18 15 func1st2nd ( 𝜑 → ( 1st𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐾 ) )
19 inss1 ( ( 𝐸 Full 𝐷 ) ∩ ( 𝐸 Faith 𝐷 ) ) ⊆ ( 𝐸 Full 𝐷 )
20 fullfunc ( 𝐸 Full 𝐷 ) ⊆ ( 𝐸 Func 𝐷 )
21 19 20 sstri ( ( 𝐸 Full 𝐷 ) ∩ ( 𝐸 Faith 𝐷 ) ) ⊆ ( 𝐸 Func 𝐷 )
22 21 9 sselid ( 𝜑𝐿 ∈ ( 𝐸 Func 𝐷 ) )
23 22 func1st2nd ( 𝜑 → ( 1st𝐿 ) ( 𝐸 Func 𝐷 ) ( 2nd𝐿 ) )
24 15 22 cofu1st2nd ( 𝜑 → ( 𝐿func 𝐾 ) = ( ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ∘func ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ) )
25 24 8 eqtr3d ( 𝜑 → ( ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ∘func ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ) = 𝐼 )
26 2 18 23 25 cofidfth ( 𝜑 → ( 1st𝐾 ) ( 𝐷 Faith 𝐸 ) ( 2nd𝐾 ) )
27 df-br ( ( 1st𝐾 ) ( 𝐷 Faith 𝐸 ) ( 2nd𝐾 ) ↔ ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ∈ ( 𝐷 Faith 𝐸 ) )
28 26 27 sylib ( 𝜑 → ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ∈ ( 𝐷 Faith 𝐸 ) )
29 17 28 eqeltrd ( 𝜑𝐾 ∈ ( 𝐷 Faith 𝐸 ) )
30 5 29 elind ( 𝜑𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
31 30 adantr ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
32 6 adantr ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( 𝐾func 𝐹 ) = 𝐺 )
33 eqidd ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) = ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) )
34 simpr ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 )
35 12 31 32 33 34 uptrai ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) )
36 breq2 ( 𝑛 = ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) → ( 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) )
37 11 35 36 spcedv ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 )
38 37 exlimiv ( ∃ 𝑚 ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 )
39 10 38 sylbir ( ( 𝜑 ∧ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 )
40 19.42v ( ∃ 𝑛 ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) ↔ ( 𝜑 ∧ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) )
41 fvexd ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ( 𝑌 ( 2nd𝐿 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ∈ V )
42 7 fveq2d ( 𝜑 → ( ( 1st𝐿 ) ‘ ( ( 1st𝐾 ) ‘ 𝑋 ) ) = ( ( 1st𝐿 ) ‘ 𝑌 ) )
43 2 1 3 15 22 8 cofid1a ( 𝜑 → ( ( 1st𝐿 ) ‘ ( ( 1st𝐾 ) ‘ 𝑋 ) ) = 𝑋 )
44 42 43 eqtr3d ( 𝜑 → ( ( 1st𝐿 ) ‘ 𝑌 ) = 𝑋 )
45 44 adantr ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ( 1st𝐿 ) ‘ 𝑌 ) = 𝑋 )
46 9 adantr ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝐿 ∈ ( ( 𝐸 Full 𝐷 ) ∩ ( 𝐸 Faith 𝐷 ) ) )
47 4 15 22 cofuass ( 𝜑 → ( ( 𝐿func 𝐾 ) ∘func 𝐹 ) = ( 𝐿func ( 𝐾func 𝐹 ) ) )
48 8 oveq1d ( 𝜑 → ( ( 𝐿func 𝐾 ) ∘func 𝐹 ) = ( 𝐼func 𝐹 ) )
49 4 2 cofulid ( 𝜑 → ( 𝐼func 𝐹 ) = 𝐹 )
50 48 49 eqtrd ( 𝜑 → ( ( 𝐿func 𝐾 ) ∘func 𝐹 ) = 𝐹 )
51 6 oveq2d ( 𝜑 → ( 𝐿func ( 𝐾func 𝐹 ) ) = ( 𝐿func 𝐺 ) )
52 47 50 51 3eqtr3rd ( 𝜑 → ( 𝐿func 𝐺 ) = 𝐹 )
53 52 adantr ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( 𝐿func 𝐺 ) = 𝐹 )
54 eqidd ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ( 𝑌 ( 2nd𝐿 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ‘ 𝑛 ) = ( ( 𝑌 ( 2nd𝐿 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ‘ 𝑛 ) )
55 simpr ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 )
56 45 46 53 54 55 uptrai ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ( ( 𝑌 ( 2nd𝐿 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ‘ 𝑛 ) )
57 breq2 ( 𝑚 = ( ( 𝑌 ( 2nd𝐿 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ‘ 𝑛 ) → ( 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ( ( 𝑌 ( 2nd𝐿 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) )
58 41 56 57 spcedv ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 )
59 58 exlimiv ( ∃ 𝑛 ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 )
60 40 59 sylbir ( ( 𝜑 ∧ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 )
61 39 60 impbida ( 𝜑 → ( ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) )
62 relup Rel ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 )
63 releldmb ( Rel ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) → ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) )
64 62 63 ax-mp ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 )
65 relup Rel ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 )
66 releldmb ( Rel ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) → ( 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) )
67 65 66 ax-mp ( 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 )
68 61 64 67 3bitr4g ( 𝜑 → ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) )
69 68 eqrdv ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) )