| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uobeq2.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 2 |
|
uobeq2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 3 |
|
uobeq2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 4 |
|
uobeq2.g |
⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) |
| 5 |
|
uobeq2.y |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) |
| 6 |
|
uobeq2.q |
⊢ 𝑄 = ( CatCat ‘ 𝑈 ) |
| 7 |
|
uobeq2.s |
⊢ 𝑆 = ( Sect ‘ 𝑄 ) |
| 8 |
|
uobeq2.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Full 𝐸 ) ) |
| 9 |
|
uobeq2.1 |
⊢ ( 𝜑 → 𝐾 ∈ dom ( 𝐷 𝑆 𝐸 ) ) |
| 10 |
|
eldmg |
⊢ ( 𝐾 ∈ dom ( 𝐷 𝑆 𝐸 ) → ( 𝐾 ∈ dom ( 𝐷 𝑆 𝐸 ) ↔ ∃ 𝑙 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) ) |
| 11 |
10
|
ibi |
⊢ ( 𝐾 ∈ dom ( 𝐷 𝑆 𝐸 ) → ∃ 𝑙 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) |
| 12 |
9 11
|
syl |
⊢ ( 𝜑 → ∃ 𝑙 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) |
| 13 |
|
eqid |
⊢ ( idfunc ‘ 𝐷 ) = ( idfunc ‘ 𝐷 ) |
| 14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → 𝑋 ∈ 𝐵 ) |
| 15 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 16 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → 𝐾 ∈ ( 𝐷 Full 𝐸 ) ) |
| 17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) |
| 18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) |
| 19 |
|
eqid |
⊢ ( Hom ‘ 𝑄 ) = ( Hom ‘ 𝑄 ) |
| 20 |
6 19 13 7
|
catcsect |
⊢ ( 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ↔ ( ( 𝐾 ∈ ( 𝐷 ( Hom ‘ 𝑄 ) 𝐸 ) ∧ 𝑙 ∈ ( 𝐸 ( Hom ‘ 𝑄 ) 𝐷 ) ) ∧ ( 𝑙 ∘func 𝐾 ) = ( idfunc ‘ 𝐷 ) ) ) |
| 21 |
20
|
simprbi |
⊢ ( 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 → ( 𝑙 ∘func 𝐾 ) = ( idfunc ‘ 𝐷 ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → ( 𝑙 ∘func 𝐾 ) = ( idfunc ‘ 𝐷 ) ) |
| 23 |
20
|
simplbi |
⊢ ( 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 → ( 𝐾 ∈ ( 𝐷 ( Hom ‘ 𝑄 ) 𝐸 ) ∧ 𝑙 ∈ ( 𝐸 ( Hom ‘ 𝑄 ) 𝐷 ) ) ) |
| 24 |
23
|
simprd |
⊢ ( 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 → 𝑙 ∈ ( 𝐸 ( Hom ‘ 𝑄 ) 𝐷 ) ) |
| 25 |
6 19 24
|
elcatchom |
⊢ ( 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 → 𝑙 ∈ ( 𝐸 Func 𝐷 ) ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → 𝑙 ∈ ( 𝐸 Func 𝐷 ) ) |
| 27 |
1 13 14 15 16 17 18 22 26
|
uobeq |
⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |
| 28 |
12 27
|
exlimddv |
⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |