| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uobeq2.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 2 |
|
uobeq2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 3 |
|
uobeq2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 4 |
|
uobeq2.g |
⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) |
| 5 |
|
uobeq2.y |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) |
| 6 |
|
uobeq2.q |
⊢ 𝑄 = ( CatCat ‘ 𝑈 ) |
| 7 |
|
uobeq3.i |
⊢ 𝐼 = ( Iso ‘ 𝑄 ) |
| 8 |
|
uobeq3.1 |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 𝐼 𝐸 ) ) |
| 9 |
|
eqid |
⊢ ( Sect ‘ 𝑄 ) = ( Sect ‘ 𝑄 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 11 |
6 1 10 7 8
|
catcisoi |
⊢ ( 𝜑 → ( 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ∧ ( 1st ‘ 𝐾 ) : 𝐵 –1-1-onto→ ( Base ‘ 𝐸 ) ) ) |
| 12 |
11
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 13 |
12
|
elin1d |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Full 𝐸 ) ) |
| 14 |
|
eqid |
⊢ ( Inv ‘ 𝑄 ) = ( Inv ‘ 𝑄 ) |
| 15 |
14 7
|
isoval2 |
⊢ ( 𝐷 𝐼 𝐸 ) = dom ( 𝐷 ( Inv ‘ 𝑄 ) 𝐸 ) |
| 16 |
8 15
|
eleqtrdi |
⊢ ( 𝜑 → 𝐾 ∈ dom ( 𝐷 ( Inv ‘ 𝑄 ) 𝐸 ) ) |
| 17 |
|
eldmg |
⊢ ( 𝐾 ∈ dom ( 𝐷 ( Inv ‘ 𝑄 ) 𝐸 ) → ( 𝐾 ∈ dom ( 𝐷 ( Inv ‘ 𝑄 ) 𝐸 ) ↔ ∃ 𝑙 𝐾 ( 𝐷 ( Inv ‘ 𝑄 ) 𝐸 ) 𝑙 ) ) |
| 18 |
17
|
ibi |
⊢ ( 𝐾 ∈ dom ( 𝐷 ( Inv ‘ 𝑄 ) 𝐸 ) → ∃ 𝑙 𝐾 ( 𝐷 ( Inv ‘ 𝑄 ) 𝐸 ) 𝑙 ) |
| 19 |
14 9
|
isinv2 |
⊢ ( 𝐾 ( 𝐷 ( Inv ‘ 𝑄 ) 𝐸 ) 𝑙 ↔ ( 𝐾 ( 𝐷 ( Sect ‘ 𝑄 ) 𝐸 ) 𝑙 ∧ 𝑙 ( 𝐸 ( Sect ‘ 𝑄 ) 𝐷 ) 𝐾 ) ) |
| 20 |
19
|
simplbi |
⊢ ( 𝐾 ( 𝐷 ( Inv ‘ 𝑄 ) 𝐸 ) 𝑙 → 𝐾 ( 𝐷 ( Sect ‘ 𝑄 ) 𝐸 ) 𝑙 ) |
| 21 |
20
|
eximi |
⊢ ( ∃ 𝑙 𝐾 ( 𝐷 ( Inv ‘ 𝑄 ) 𝐸 ) 𝑙 → ∃ 𝑙 𝐾 ( 𝐷 ( Sect ‘ 𝑄 ) 𝐸 ) 𝑙 ) |
| 22 |
16 18 21
|
3syl |
⊢ ( 𝜑 → ∃ 𝑙 𝐾 ( 𝐷 ( Sect ‘ 𝑄 ) 𝐸 ) 𝑙 ) |
| 23 |
|
eldmg |
⊢ ( 𝐾 ∈ ( 𝐷 𝐼 𝐸 ) → ( 𝐾 ∈ dom ( 𝐷 ( Sect ‘ 𝑄 ) 𝐸 ) ↔ ∃ 𝑙 𝐾 ( 𝐷 ( Sect ‘ 𝑄 ) 𝐸 ) 𝑙 ) ) |
| 24 |
8 23
|
syl |
⊢ ( 𝜑 → ( 𝐾 ∈ dom ( 𝐷 ( Sect ‘ 𝑄 ) 𝐸 ) ↔ ∃ 𝑙 𝐾 ( 𝐷 ( Sect ‘ 𝑄 ) 𝐸 ) 𝑙 ) ) |
| 25 |
22 24
|
mpbird |
⊢ ( 𝜑 → 𝐾 ∈ dom ( 𝐷 ( Sect ‘ 𝑄 ) 𝐸 ) ) |
| 26 |
1 2 3 4 5 6 9 13 25
|
uobeq2 |
⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |