Description: An isomorphism between categories generates equal sets of universal objects. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uobeq2.b | |- B = ( Base ` D ) |
|
| uobeq2.x | |- ( ph -> X e. B ) |
||
| uobeq2.f | |- ( ph -> F e. ( C Func D ) ) |
||
| uobeq2.g | |- ( ph -> ( K o.func F ) = G ) |
||
| uobeq2.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
||
| uobeq2.q | |- Q = ( CatCat ` U ) |
||
| uobeq3.i | |- I = ( Iso ` Q ) |
||
| uobeq3.1 | |- ( ph -> K e. ( D I E ) ) |
||
| Assertion | uobeq3 | |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobeq2.b | |- B = ( Base ` D ) |
|
| 2 | uobeq2.x | |- ( ph -> X e. B ) |
|
| 3 | uobeq2.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 4 | uobeq2.g | |- ( ph -> ( K o.func F ) = G ) |
|
| 5 | uobeq2.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
|
| 6 | uobeq2.q | |- Q = ( CatCat ` U ) |
|
| 7 | uobeq3.i | |- I = ( Iso ` Q ) |
|
| 8 | uobeq3.1 | |- ( ph -> K e. ( D I E ) ) |
|
| 9 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 10 | 6 1 9 7 8 | catcisoi | |- ( ph -> ( K e. ( ( D Full E ) i^i ( D Faith E ) ) /\ ( 1st ` K ) : B -1-1-onto-> ( Base ` E ) ) ) |
| 11 | 10 | simpld | |- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 12 | 1 2 3 4 5 11 | uobffth | |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |