| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uobeq2.b |
|- B = ( Base ` D ) |
| 2 |
|
uobeq2.x |
|- ( ph -> X e. B ) |
| 3 |
|
uobeq2.f |
|- ( ph -> F e. ( C Func D ) ) |
| 4 |
|
uobeq2.g |
|- ( ph -> ( K o.func F ) = G ) |
| 5 |
|
uobeq2.y |
|- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
| 6 |
|
uobeq2.q |
|- Q = ( CatCat ` U ) |
| 7 |
|
uobeq3.i |
|- I = ( Iso ` Q ) |
| 8 |
|
uobeq3.1 |
|- ( ph -> K e. ( D I E ) ) |
| 9 |
|
eqid |
|- ( Sect ` Q ) = ( Sect ` Q ) |
| 10 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 11 |
6 1 10 7 8
|
catcisoi |
|- ( ph -> ( K e. ( ( D Full E ) i^i ( D Faith E ) ) /\ ( 1st ` K ) : B -1-1-onto-> ( Base ` E ) ) ) |
| 12 |
11
|
simpld |
|- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 13 |
12
|
elin1d |
|- ( ph -> K e. ( D Full E ) ) |
| 14 |
|
eqid |
|- ( Inv ` Q ) = ( Inv ` Q ) |
| 15 |
14 7
|
isoval2 |
|- ( D I E ) = dom ( D ( Inv ` Q ) E ) |
| 16 |
8 15
|
eleqtrdi |
|- ( ph -> K e. dom ( D ( Inv ` Q ) E ) ) |
| 17 |
|
eldmg |
|- ( K e. dom ( D ( Inv ` Q ) E ) -> ( K e. dom ( D ( Inv ` Q ) E ) <-> E. l K ( D ( Inv ` Q ) E ) l ) ) |
| 18 |
17
|
ibi |
|- ( K e. dom ( D ( Inv ` Q ) E ) -> E. l K ( D ( Inv ` Q ) E ) l ) |
| 19 |
14 9
|
isinv2 |
|- ( K ( D ( Inv ` Q ) E ) l <-> ( K ( D ( Sect ` Q ) E ) l /\ l ( E ( Sect ` Q ) D ) K ) ) |
| 20 |
19
|
simplbi |
|- ( K ( D ( Inv ` Q ) E ) l -> K ( D ( Sect ` Q ) E ) l ) |
| 21 |
20
|
eximi |
|- ( E. l K ( D ( Inv ` Q ) E ) l -> E. l K ( D ( Sect ` Q ) E ) l ) |
| 22 |
16 18 21
|
3syl |
|- ( ph -> E. l K ( D ( Sect ` Q ) E ) l ) |
| 23 |
|
eldmg |
|- ( K e. ( D I E ) -> ( K e. dom ( D ( Sect ` Q ) E ) <-> E. l K ( D ( Sect ` Q ) E ) l ) ) |
| 24 |
8 23
|
syl |
|- ( ph -> ( K e. dom ( D ( Sect ` Q ) E ) <-> E. l K ( D ( Sect ` Q ) E ) l ) ) |
| 25 |
22 24
|
mpbird |
|- ( ph -> K e. dom ( D ( Sect ` Q ) E ) ) |
| 26 |
1 2 3 4 5 6 9 13 25
|
uobeq2 |
|- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |