Metamath Proof Explorer


Theorem uobeq2

Description: If a full functor (in fact, a full embedding) is a section, then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses uobeq2.b B = Base D
uobeq2.x φ X B
uobeq2.f φ F C Func D
uobeq2.g φ K func F = G
uobeq2.y φ 1 st K X = Y
uobeq2.q Q = CatCat U
uobeq2.s S = Sect Q
uobeq2.k φ K D Full E
uobeq2.1 φ K dom D S E
Assertion uobeq2 Could not format assertion : No typesetting found for |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 uobeq2.b B = Base D
2 uobeq2.x φ X B
3 uobeq2.f φ F C Func D
4 uobeq2.g φ K func F = G
5 uobeq2.y φ 1 st K X = Y
6 uobeq2.q Q = CatCat U
7 uobeq2.s S = Sect Q
8 uobeq2.k φ K D Full E
9 uobeq2.1 φ K dom D S E
10 eldmg K dom D S E K dom D S E l K D S E l
11 10 ibi K dom D S E l K D S E l
12 9 11 syl φ l K D S E l
13 eqid id func D = id func D
14 2 adantr φ K D S E l X B
15 3 adantr φ K D S E l F C Func D
16 8 adantr φ K D S E l K D Full E
17 4 adantr φ K D S E l K func F = G
18 5 adantr φ K D S E l 1 st K X = Y
19 eqid Hom Q = Hom Q
20 6 19 13 7 catcsect K D S E l K D Hom Q E l E Hom Q D l func K = id func D
21 20 simprbi K D S E l l func K = id func D
22 21 adantl φ K D S E l l func K = id func D
23 20 simplbi K D S E l K D Hom Q E l E Hom Q D
24 23 simprd K D S E l l E Hom Q D
25 6 19 24 elcatchom K D S E l l E Func D
26 25 adantl φ K D S E l l E Func D
27 1 13 14 15 16 17 18 22 26 uobeq Could not format ( ( ph /\ K ( D S E ) l ) -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) : No typesetting found for |- ( ( ph /\ K ( D S E ) l ) -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |-
28 12 27 exlimddv Could not format ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) : No typesetting found for |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |-