Metamath Proof Explorer


Theorem catcisoi

Description: A functor is an isomorphism of categories only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in Adamek p. 34. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses catcisoi.c C = CatCat U
catcisoi.r R = Base X
catcisoi.s S = Base Y
catcisoi.i I = Iso C
catcisoi.f φ F X I Y
Assertion catcisoi φ F X Full Y X Faith Y 1 st F : R 1-1 onto S

Proof

Step Hyp Ref Expression
1 catcisoi.c C = CatCat U
2 catcisoi.r R = Base X
3 catcisoi.s S = Base Y
4 catcisoi.i I = Iso C
5 catcisoi.f φ F X I Y
6 eqid Base C = Base C
7 4 5 6 isorcl2 φ X Base C Y Base C
8 7 simpld φ X Base C
9 1 6 elbasfv X Base C U V
10 8 9 syl φ U V
11 7 simprd φ Y Base C
12 1 6 2 3 10 8 11 4 catciso φ F X I Y F X Full Y X Faith Y 1 st F : R 1-1 onto S
13 5 12 mpbid φ F X Full Y X Faith Y 1 st F : R 1-1 onto S