| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catciso.c |
|
| 2 |
|
catciso.b |
|
| 3 |
|
catciso.r |
|
| 4 |
|
catciso.s |
|
| 5 |
|
catciso.u |
|
| 6 |
|
catciso.x |
|
| 7 |
|
catciso.y |
|
| 8 |
|
catciso.i |
|
| 9 |
|
relfunc |
|
| 10 |
|
eqid |
|
| 11 |
1
|
catccat |
|
| 12 |
5 11
|
syl |
|
| 13 |
2 10 12 6 7 8
|
isoval |
|
| 14 |
13
|
eleq2d |
|
| 15 |
14
|
biimpa |
|
| 16 |
12
|
adantr |
|
| 17 |
6
|
adantr |
|
| 18 |
7
|
adantr |
|
| 19 |
2 10 16 17 18
|
invfun |
|
| 20 |
|
funfvbrb |
|
| 21 |
19 20
|
syl |
|
| 22 |
15 21
|
mpbid |
|
| 23 |
|
eqid |
|
| 24 |
2 10 16 17 18 23
|
isinv |
|
| 25 |
22 24
|
mpbid |
|
| 26 |
25
|
simpld |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
2 27 28 29 23 16 17 18
|
issect |
|
| 31 |
26 30
|
mpbid |
|
| 32 |
31
|
simp1d |
|
| 33 |
1 2 5 27 6 7
|
catchom |
|
| 34 |
33
|
adantr |
|
| 35 |
32 34
|
eleqtrd |
|
| 36 |
|
1st2nd |
|
| 37 |
9 35 36
|
sylancr |
|
| 38 |
|
1st2ndbr |
|
| 39 |
9 35 38
|
sylancr |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
39
|
adantr |
|
| 43 |
|
simprl |
|
| 44 |
|
simprr |
|
| 45 |
3 40 41 42 43 44
|
funcf2 |
|
| 46 |
|
relfunc |
|
| 47 |
31
|
simp2d |
|
| 48 |
1 2 5 27 7 6
|
catchom |
|
| 49 |
48
|
adantr |
|
| 50 |
47 49
|
eleqtrd |
|
| 51 |
|
1st2ndbr |
|
| 52 |
46 50 51
|
sylancr |
|
| 53 |
52
|
adantr |
|
| 54 |
3 4 42
|
funcf1 |
|
| 55 |
54 43
|
ffvelcdmd |
|
| 56 |
54 44
|
ffvelcdmd |
|
| 57 |
4 41 40 53 55 56
|
funcf2 |
|
| 58 |
31
|
simp3d |
|
| 59 |
5
|
adantr |
|
| 60 |
1 2 59 28 17 18 17 35 50
|
catcco |
|
| 61 |
|
eqid |
|
| 62 |
1 2 29 61 5 6
|
catcid |
|
| 63 |
62
|
adantr |
|
| 64 |
58 60 63
|
3eqtr3d |
|
| 65 |
64
|
adantr |
|
| 66 |
65
|
fveq2d |
|
| 67 |
66
|
fveq1d |
|
| 68 |
35
|
adantr |
|
| 69 |
50
|
adantr |
|
| 70 |
3 68 69 43
|
cofu1 |
|
| 71 |
1 2 5
|
catcbas |
|
| 72 |
|
inss2 |
|
| 73 |
71 72
|
eqsstrdi |
|
| 74 |
73 6
|
sseldd |
|
| 75 |
74
|
ad2antrr |
|
| 76 |
61 3 75 43
|
idfu1 |
|
| 77 |
67 70 76
|
3eqtr3d |
|
| 78 |
66
|
fveq1d |
|
| 79 |
3 68 69 44
|
cofu1 |
|
| 80 |
61 3 75 44
|
idfu1 |
|
| 81 |
78 79 80
|
3eqtr3d |
|
| 82 |
77 81
|
oveq12d |
|
| 83 |
82
|
feq3d |
|
| 84 |
57 83
|
mpbid |
|
| 85 |
65
|
fveq2d |
|
| 86 |
85
|
oveqd |
|
| 87 |
3 68 69 43 44
|
cofu2nd |
|
| 88 |
61 3 75 40 43 44
|
idfu2nd |
|
| 89 |
86 87 88
|
3eqtr3d |
|
| 90 |
25
|
simprd |
|
| 91 |
2 27 28 29 23 16 18 17
|
issect |
|
| 92 |
90 91
|
mpbid |
|
| 93 |
92
|
simp3d |
|
| 94 |
1 2 59 28 18 17 18 50 35
|
catcco |
|
| 95 |
|
eqid |
|
| 96 |
1 2 29 95 5 7
|
catcid |
|
| 97 |
96
|
adantr |
|
| 98 |
93 94 97
|
3eqtr3d |
|
| 99 |
98
|
adantr |
|
| 100 |
99
|
fveq2d |
|
| 101 |
100
|
oveqd |
|
| 102 |
4 69 68 55 56
|
cofu2nd |
|
| 103 |
77 81
|
oveq12d |
|
| 104 |
103
|
coeq1d |
|
| 105 |
102 104
|
eqtrd |
|
| 106 |
73
|
ad2antrr |
|
| 107 |
7
|
ad2antrr |
|
| 108 |
106 107
|
sseldd |
|
| 109 |
95 4 108 41 55 56
|
idfu2nd |
|
| 110 |
101 105 109
|
3eqtr3d |
|
| 111 |
45 84 89 110
|
fcof1od |
|
| 112 |
111
|
ralrimivva |
|
| 113 |
3 40 41
|
isffth2 |
|
| 114 |
39 112 113
|
sylanbrc |
|
| 115 |
|
df-br |
|
| 116 |
114 115
|
sylib |
|
| 117 |
37 116
|
eqeltrd |
|
| 118 |
3 4 39
|
funcf1 |
|
| 119 |
4 3 52
|
funcf1 |
|
| 120 |
64
|
fveq2d |
|
| 121 |
3 35 50
|
cofu1st |
|
| 122 |
74
|
adantr |
|
| 123 |
61 3 122
|
idfu1st |
|
| 124 |
120 121 123
|
3eqtr3d |
|
| 125 |
98
|
fveq2d |
|
| 126 |
4 50 35
|
cofu1st |
|
| 127 |
73 7
|
sseldd |
|
| 128 |
127
|
adantr |
|
| 129 |
95 4 128
|
idfu1st |
|
| 130 |
125 126 129
|
3eqtr3d |
|
| 131 |
118 119 124 130
|
fcof1od |
|
| 132 |
117 131
|
jca |
|
| 133 |
12
|
adantr |
|
| 134 |
6
|
adantr |
|
| 135 |
7
|
adantr |
|
| 136 |
|
inss1 |
|
| 137 |
|
fullfunc |
|
| 138 |
136 137
|
sstri |
|
| 139 |
|
simprl |
|
| 140 |
138 139
|
sselid |
|
| 141 |
9 140 36
|
sylancr |
|
| 142 |
5
|
adantr |
|
| 143 |
|
eqid |
|
| 144 |
141 139
|
eqeltrrd |
|
| 145 |
144 115
|
sylibr |
|
| 146 |
|
simprr |
|
| 147 |
1 2 3 4 142 134 135 10 143 145 146
|
catcisolem |
|
| 148 |
141 147
|
eqbrtrd |
|
| 149 |
2 10 133 134 135 8 148
|
inviso1 |
|
| 150 |
132 149
|
impbida |
|