Metamath Proof Explorer


Theorem catcco

Description: Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catcbas.c C=CatCatU
catcbas.b B=BaseC
catcbas.u φUV
catcco.o ·˙=compC
catcco.x φXB
catcco.y φYB
catcco.z φZB
catcco.f φFXFuncY
catcco.g φGYFuncZ
Assertion catcco φGXY·˙ZF=GfuncF

Proof

Step Hyp Ref Expression
1 catcbas.c C=CatCatU
2 catcbas.b B=BaseC
3 catcbas.u φUV
4 catcco.o ·˙=compC
5 catcco.x φXB
6 catcco.y φYB
7 catcco.z φZB
8 catcco.f φFXFuncY
9 catcco.g φGYFuncZ
10 1 2 3 4 catccofval φ·˙=vB×B,zBg2ndvFuncz,fFuncvgfuncf
11 simprl φv=XYz=Zv=XY
12 11 fveq2d φv=XYz=Z2ndv=2ndXY
13 op2ndg XBYB2ndXY=Y
14 5 6 13 syl2anc φ2ndXY=Y
15 14 adantr φv=XYz=Z2ndXY=Y
16 12 15 eqtrd φv=XYz=Z2ndv=Y
17 simprr φv=XYz=Zz=Z
18 16 17 oveq12d φv=XYz=Z2ndvFuncz=YFuncZ
19 11 fveq2d φv=XYz=ZFuncv=FuncXY
20 df-ov XFuncY=FuncXY
21 19 20 eqtr4di φv=XYz=ZFuncv=XFuncY
22 eqidd φv=XYz=Zgfuncf=gfuncf
23 18 21 22 mpoeq123dv φv=XYz=Zg2ndvFuncz,fFuncvgfuncf=gYFuncZ,fXFuncYgfuncf
24 5 6 opelxpd φXYB×B
25 ovex YFuncZV
26 ovex XFuncYV
27 25 26 mpoex gYFuncZ,fXFuncYgfuncfV
28 27 a1i φgYFuncZ,fXFuncYgfuncfV
29 10 23 24 7 28 ovmpod φXY·˙Z=gYFuncZ,fXFuncYgfuncf
30 oveq12 g=Gf=Fgfuncf=GfuncF
31 30 adantl φg=Gf=Fgfuncf=GfuncF
32 ovexd φGfuncFV
33 29 31 9 8 32 ovmpod φGXY·˙ZF=GfuncF