| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catccatid.c |
|
| 2 |
|
catccatid.b |
|
| 3 |
2
|
a1i |
|
| 4 |
|
eqidd |
|
| 5 |
|
eqidd |
|
| 6 |
1
|
fvexi |
|
| 7 |
6
|
a1i |
|
| 8 |
|
biid |
|
| 9 |
|
id |
|
| 10 |
1 2 9
|
catcbas |
|
| 11 |
|
inss2 |
|
| 12 |
10 11
|
eqsstrdi |
|
| 13 |
12
|
sselda |
|
| 14 |
|
eqid |
|
| 15 |
14
|
idfucl |
|
| 16 |
13 15
|
syl |
|
| 17 |
|
simpl |
|
| 18 |
|
eqid |
|
| 19 |
|
simpr |
|
| 20 |
1 2 17 18 19 19
|
catchom |
|
| 21 |
16 20
|
eleqtrrd |
|
| 22 |
|
simpl |
|
| 23 |
|
eqid |
|
| 24 |
|
simpr1l |
|
| 25 |
|
simpr1r |
|
| 26 |
|
simpr31 |
|
| 27 |
1 2 22 18 24 25
|
catchom |
|
| 28 |
26 27
|
eleqtrd |
|
| 29 |
25 16
|
syldan |
|
| 30 |
1 2 22 23 24 25 25 28 29
|
catcco |
|
| 31 |
28 14
|
cofulid |
|
| 32 |
30 31
|
eqtrd |
|
| 33 |
|
simpr2l |
|
| 34 |
|
simpr32 |
|
| 35 |
1 2 22 18 25 33
|
catchom |
|
| 36 |
34 35
|
eleqtrd |
|
| 37 |
1 2 22 23 25 25 33 29 36
|
catcco |
|
| 38 |
36 14
|
cofurid |
|
| 39 |
37 38
|
eqtrd |
|
| 40 |
28 36
|
cofucl |
|
| 41 |
1 2 22 23 24 25 33 28 36
|
catcco |
|
| 42 |
1 2 22 18 24 33
|
catchom |
|
| 43 |
40 41 42
|
3eltr4d |
|
| 44 |
|
simpr33 |
|
| 45 |
|
simpr2r |
|
| 46 |
1 2 22 18 33 45
|
catchom |
|
| 47 |
44 46
|
eleqtrd |
|
| 48 |
28 36 47
|
cofuass |
|
| 49 |
36 47
|
cofucl |
|
| 50 |
1 2 22 23 24 25 45 28 49
|
catcco |
|
| 51 |
1 2 22 23 24 33 45 40 47
|
catcco |
|
| 52 |
48 50 51
|
3eqtr4d |
|
| 53 |
1 2 22 23 25 33 45 36 47
|
catcco |
|
| 54 |
53
|
oveq1d |
|
| 55 |
41
|
oveq2d |
|
| 56 |
52 54 55
|
3eqtr4d |
|
| 57 |
3 4 5 7 8 21 32 39 43 56
|
iscatd2 |
|