Metamath Proof Explorer


Theorem catchom

Description: Set of arrows of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catcbas.c C=CatCatU
catcbas.b B=BaseC
catcbas.u φUV
catchomfval.h H=HomC
catchom.x φXB
catchom.y φYB
Assertion catchom φXHY=XFuncY

Proof

Step Hyp Ref Expression
1 catcbas.c C=CatCatU
2 catcbas.b B=BaseC
3 catcbas.u φUV
4 catchomfval.h H=HomC
5 catchom.x φXB
6 catchom.y φYB
7 1 2 3 4 catchomfval φH=xB,yBxFuncy
8 oveq12 x=Xy=YxFuncy=XFuncY
9 8 adantl φx=Xy=YxFuncy=XFuncY
10 ovexd φXFuncYV
11 7 9 5 6 10 ovmpod φXHY=XFuncY