Metamath Proof Explorer


Theorem cofulid

Description: The identity functor is a left identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses cofulid.g φ F C Func D
cofulid.1 I = id func D
Assertion cofulid φ I func F = F

Proof

Step Hyp Ref Expression
1 cofulid.g φ F C Func D
2 cofulid.1 I = id func D
3 eqid Base D = Base D
4 funcrcl F C Func D C Cat D Cat
5 1 4 syl φ C Cat D Cat
6 5 simprd φ D Cat
7 2 3 6 idfu1st φ 1 st I = I Base D
8 7 coeq1d φ 1 st I 1 st F = I Base D 1 st F
9 eqid Base C = Base C
10 relfunc Rel C Func D
11 1st2ndbr Rel C Func D F C Func D 1 st F C Func D 2 nd F
12 10 1 11 sylancr φ 1 st F C Func D 2 nd F
13 9 3 12 funcf1 φ 1 st F : Base C Base D
14 fcoi2 1 st F : Base C Base D I Base D 1 st F = 1 st F
15 13 14 syl φ I Base D 1 st F = 1 st F
16 8 15 eqtrd φ 1 st I 1 st F = 1 st F
17 6 3ad2ant1 φ x Base C y Base C D Cat
18 eqid Hom D = Hom D
19 13 ffvelrnda φ x Base C 1 st F x Base D
20 19 3adant3 φ x Base C y Base C 1 st F x Base D
21 13 ffvelrnda φ y Base C 1 st F y Base D
22 21 3adant2 φ x Base C y Base C 1 st F y Base D
23 2 3 17 18 20 22 idfu2nd φ x Base C y Base C 1 st F x 2 nd I 1 st F y = I 1 st F x Hom D 1 st F y
24 23 coeq1d φ x Base C y Base C 1 st F x 2 nd I 1 st F y x 2 nd F y = I 1 st F x Hom D 1 st F y x 2 nd F y
25 eqid Hom C = Hom C
26 12 3ad2ant1 φ x Base C y Base C 1 st F C Func D 2 nd F
27 simp2 φ x Base C y Base C x Base C
28 simp3 φ x Base C y Base C y Base C
29 9 25 18 26 27 28 funcf2 φ x Base C y Base C x 2 nd F y : x Hom C y 1 st F x Hom D 1 st F y
30 fcoi2 x 2 nd F y : x Hom C y 1 st F x Hom D 1 st F y I 1 st F x Hom D 1 st F y x 2 nd F y = x 2 nd F y
31 29 30 syl φ x Base C y Base C I 1 st F x Hom D 1 st F y x 2 nd F y = x 2 nd F y
32 24 31 eqtrd φ x Base C y Base C 1 st F x 2 nd I 1 st F y x 2 nd F y = x 2 nd F y
33 32 mpoeq3dva φ x Base C , y Base C 1 st F x 2 nd I 1 st F y x 2 nd F y = x Base C , y Base C x 2 nd F y
34 9 12 funcfn2 φ 2 nd F Fn Base C × Base C
35 fnov 2 nd F Fn Base C × Base C 2 nd F = x Base C , y Base C x 2 nd F y
36 34 35 sylib φ 2 nd F = x Base C , y Base C x 2 nd F y
37 33 36 eqtr4d φ x Base C , y Base C 1 st F x 2 nd I 1 st F y x 2 nd F y = 2 nd F
38 16 37 opeq12d φ 1 st I 1 st F x Base C , y Base C 1 st F x 2 nd I 1 st F y x 2 nd F y = 1 st F 2 nd F
39 2 idfucl D Cat I D Func D
40 6 39 syl φ I D Func D
41 9 1 40 cofuval φ I func F = 1 st I 1 st F x Base C , y Base C 1 st F x 2 nd I 1 st F y x 2 nd F y
42 1st2nd Rel C Func D F C Func D F = 1 st F 2 nd F
43 10 1 42 sylancr φ F = 1 st F 2 nd F
44 38 41 43 3eqtr4d φ I func F = F