Metamath Proof Explorer


Theorem cofuval

Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses cofuval.b B=BaseC
cofuval.f φFCFuncD
cofuval.g φGDFuncE
Assertion cofuval φGfuncF=1stG1stFxB,yB1stFx2ndG1stFyx2ndFy

Proof

Step Hyp Ref Expression
1 cofuval.b B=BaseC
2 cofuval.f φFCFuncD
3 cofuval.g φGDFuncE
4 df-cofu func=gV,fV1stg1stfxdomdom2ndf,ydomdom2ndf1stfx2ndg1stfyx2ndfy
5 4 a1i φfunc=gV,fV1stg1stfxdomdom2ndf,ydomdom2ndf1stfx2ndg1stfyx2ndfy
6 simprl φg=Gf=Fg=G
7 6 fveq2d φg=Gf=F1stg=1stG
8 simprr φg=Gf=Ff=F
9 8 fveq2d φg=Gf=F1stf=1stF
10 7 9 coeq12d φg=Gf=F1stg1stf=1stG1stF
11 8 fveq2d φg=Gf=F2ndf=2ndF
12 11 dmeqd φg=Gf=Fdom2ndf=dom2ndF
13 relfunc RelCFuncD
14 1st2ndbr RelCFuncDFCFuncD1stFCFuncD2ndF
15 13 2 14 sylancr φ1stFCFuncD2ndF
16 1 15 funcfn2 φ2ndFFnB×B
17 16 fndmd φdom2ndF=B×B
18 17 adantr φg=Gf=Fdom2ndF=B×B
19 12 18 eqtrd φg=Gf=Fdom2ndf=B×B
20 19 dmeqd φg=Gf=Fdomdom2ndf=domB×B
21 dmxpid domB×B=B
22 20 21 eqtrdi φg=Gf=Fdomdom2ndf=B
23 6 fveq2d φg=Gf=F2ndg=2ndG
24 9 fveq1d φg=Gf=F1stfx=1stFx
25 9 fveq1d φg=Gf=F1stfy=1stFy
26 23 24 25 oveq123d φg=Gf=F1stfx2ndg1stfy=1stFx2ndG1stFy
27 11 oveqd φg=Gf=Fx2ndfy=x2ndFy
28 26 27 coeq12d φg=Gf=F1stfx2ndg1stfyx2ndfy=1stFx2ndG1stFyx2ndFy
29 22 22 28 mpoeq123dv φg=Gf=Fxdomdom2ndf,ydomdom2ndf1stfx2ndg1stfyx2ndfy=xB,yB1stFx2ndG1stFyx2ndFy
30 10 29 opeq12d φg=Gf=F1stg1stfxdomdom2ndf,ydomdom2ndf1stfx2ndg1stfyx2ndfy=1stG1stFxB,yB1stFx2ndG1stFyx2ndFy
31 3 elexd φGV
32 2 elexd φFV
33 opex 1stG1stFxB,yB1stFx2ndG1stFyx2ndFyV
34 33 a1i φ1stG1stFxB,yB1stFx2ndG1stFyx2ndFyV
35 5 30 31 32 34 ovmpod φGfuncF=1stG1stFxB,yB1stFx2ndG1stFyx2ndFy