Metamath Proof Explorer


Theorem cofu1st

Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses cofuval.b B=BaseC
cofuval.f φFCFuncD
cofuval.g φGDFuncE
Assertion cofu1st φ1stGfuncF=1stG1stF

Proof

Step Hyp Ref Expression
1 cofuval.b B=BaseC
2 cofuval.f φFCFuncD
3 cofuval.g φGDFuncE
4 1 2 3 cofuval φGfuncF=1stG1stFxB,yB1stFx2ndG1stFyx2ndFy
5 4 fveq2d φ1stGfuncF=1st1stG1stFxB,yB1stFx2ndG1stFyx2ndFy
6 fvex 1stGV
7 fvex 1stFV
8 6 7 coex 1stG1stFV
9 1 fvexi BV
10 9 9 mpoex xB,yB1stFx2ndG1stFyx2ndFyV
11 8 10 op1st 1st1stG1stFxB,yB1stFx2ndG1stFyx2ndFy=1stG1stF
12 5 11 eqtrdi φ1stGfuncF=1stG1stF