Description: The identity functor is a right identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cofulid.g | |
|
cofurid.1 | |
||
Assertion | cofurid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofulid.g | |
|
2 | cofurid.1 | |
|
3 | eqid | |
|
4 | funcrcl | |
|
5 | 1 4 | syl | |
6 | 5 | simpld | |
7 | 2 3 6 | idfu1st | |
8 | 7 | coeq2d | |
9 | eqid | |
|
10 | relfunc | |
|
11 | 1st2ndbr | |
|
12 | 10 1 11 | sylancr | |
13 | 3 9 12 | funcf1 | |
14 | fcoi1 | |
|
15 | 13 14 | syl | |
16 | 8 15 | eqtrd | |
17 | 7 | 3ad2ant1 | |
18 | 17 | fveq1d | |
19 | fvresi | |
|
20 | 19 | 3ad2ant2 | |
21 | 18 20 | eqtrd | |
22 | 17 | fveq1d | |
23 | fvresi | |
|
24 | 23 | 3ad2ant3 | |
25 | 22 24 | eqtrd | |
26 | 21 25 | oveq12d | |
27 | 6 | 3ad2ant1 | |
28 | eqid | |
|
29 | simp2 | |
|
30 | simp3 | |
|
31 | 2 3 27 28 29 30 | idfu2nd | |
32 | 26 31 | coeq12d | |
33 | eqid | |
|
34 | 12 | 3ad2ant1 | |
35 | 3 28 33 34 29 30 | funcf2 | |
36 | fcoi1 | |
|
37 | 35 36 | syl | |
38 | 32 37 | eqtrd | |
39 | 38 | mpoeq3dva | |
40 | 3 12 | funcfn2 | |
41 | fnov | |
|
42 | 40 41 | sylib | |
43 | 39 42 | eqtr4d | |
44 | 16 43 | opeq12d | |
45 | 2 | idfucl | |
46 | 6 45 | syl | |
47 | 3 46 1 | cofuval | |
48 | 1st2nd | |
|
49 | 10 1 48 | sylancr | |
50 | 44 47 49 | 3eqtr4d | |