Description: A fully faithful functor is a functor which is bijective on hom-sets. (Contributed by Mario Carneiro, 27-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isfth.b | |
|
isfth.h | |
||
isfth.j | |
||
Assertion | isffth2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfth.b | |
|
2 | isfth.h | |
|
3 | isfth.j | |
|
4 | 1 3 2 | isfull2 | |
5 | 1 2 3 | isfth2 | |
6 | 4 5 | anbi12i | |
7 | brin | |
|
8 | df-f1o | |
|
9 | 8 | biancomi | |
10 | 9 | 2ralbii | |
11 | r19.26-2 | |
|
12 | 10 11 | bitri | |
13 | 12 | anbi2i | |
14 | anandi | |
|
15 | 13 14 | bitri | |
16 | 6 7 15 | 3bitr4i | |