Metamath Proof Explorer


Theorem isffth2

Description: A fully faithful functor is a functor which is bijective on hom-sets. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses isfth.b B=BaseC
isfth.h H=HomC
isfth.j J=HomD
Assertion isffth2 FCFullDCFaithDGFCFuncDGxByBxGy:xHy1-1 ontoFxJFy

Proof

Step Hyp Ref Expression
1 isfth.b B=BaseC
2 isfth.h H=HomC
3 isfth.j J=HomD
4 1 3 2 isfull2 FCFullDGFCFuncDGxByBxGy:xHyontoFxJFy
5 1 2 3 isfth2 FCFaithDGFCFuncDGxByBxGy:xHy1-1FxJFy
6 4 5 anbi12i FCFullDGFCFaithDGFCFuncDGxByBxGy:xHyontoFxJFyFCFuncDGxByBxGy:xHy1-1FxJFy
7 brin FCFullDCFaithDGFCFullDGFCFaithDG
8 df-f1o xGy:xHy1-1 ontoFxJFyxGy:xHy1-1FxJFyxGy:xHyontoFxJFy
9 8 biancomi xGy:xHy1-1 ontoFxJFyxGy:xHyontoFxJFyxGy:xHy1-1FxJFy
10 9 2ralbii xByBxGy:xHy1-1 ontoFxJFyxByBxGy:xHyontoFxJFyxGy:xHy1-1FxJFy
11 r19.26-2 xByBxGy:xHyontoFxJFyxGy:xHy1-1FxJFyxByBxGy:xHyontoFxJFyxByBxGy:xHy1-1FxJFy
12 10 11 bitri xByBxGy:xHy1-1 ontoFxJFyxByBxGy:xHyontoFxJFyxByBxGy:xHy1-1FxJFy
13 12 anbi2i FCFuncDGxByBxGy:xHy1-1 ontoFxJFyFCFuncDGxByBxGy:xHyontoFxJFyxByBxGy:xHy1-1FxJFy
14 anandi FCFuncDGxByBxGy:xHyontoFxJFyxByBxGy:xHy1-1FxJFyFCFuncDGxByBxGy:xHyontoFxJFyFCFuncDGxByBxGy:xHy1-1FxJFy
15 13 14 bitri FCFuncDGxByBxGy:xHy1-1 ontoFxJFyFCFuncDGxByBxGy:xHyontoFxJFyFCFuncDGxByBxGy:xHy1-1FxJFy
16 6 7 15 3bitr4i FCFullDCFaithDGFCFuncDGxByBxGy:xHy1-1 ontoFxJFy