Metamath Proof Explorer


Definition df-fth

Description: Function returning all the faithful functors from a category C to a category D . A faithful functor is a functor in which all the morphism maps G ( X , Y ) between objects X , Y e. C are injections. Definition 3.27(2) in Adamek p. 34. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Assertion df-fth Faith=cCat,dCatfg|fcFuncdgxBasecyBasecFunxgy-1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfth classFaith
1 vc setvarc
2 ccat classCat
3 vd setvard
4 vf setvarf
5 vg setvarg
6 4 cv setvarf
7 1 cv setvarc
8 cfunc classFunc
9 3 cv setvard
10 7 9 8 co classcFuncd
11 5 cv setvarg
12 6 11 10 wbr wfffcFuncdg
13 vx setvarx
14 cbs classBase
15 7 14 cfv classBasec
16 vy setvary
17 13 cv setvarx
18 16 cv setvary
19 17 18 11 co classxgy
20 19 ccnv classxgy-1
21 20 wfun wffFunxgy-1
22 21 16 15 wral wffyBasecFunxgy-1
23 22 13 15 wral wffxBasecyBasecFunxgy-1
24 12 23 wa wfffcFuncdgxBasecyBasecFunxgy-1
25 24 4 5 copab classfg|fcFuncdgxBasecyBasecFunxgy-1
26 1 3 2 2 25 cmpo classcCat,dCatfg|fcFuncdgxBasecyBasecFunxgy-1
27 0 26 wceq wffFaith=cCat,dCatfg|fcFuncdgxBasecyBasecFunxgy-1