Metamath Proof Explorer


Definition df-full

Description: Function returning all the full functors from a category C to a category D . A full functor is a functor in which all the morphism maps G ( X , Y ) between objects X , Y e. C are surjections. Definition 3.27(3) in Adamek p. 34. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Assertion df-full Full=cCat,dCatfg|fcFuncdgxBasecyBasecranxgy=fxHomdfy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cful classFull
1 vc setvarc
2 ccat classCat
3 vd setvard
4 vf setvarf
5 vg setvarg
6 4 cv setvarf
7 1 cv setvarc
8 cfunc classFunc
9 3 cv setvard
10 7 9 8 co classcFuncd
11 5 cv setvarg
12 6 11 10 wbr wfffcFuncdg
13 vx setvarx
14 cbs classBase
15 7 14 cfv classBasec
16 vy setvary
17 13 cv setvarx
18 16 cv setvary
19 17 18 11 co classxgy
20 19 crn classranxgy
21 17 6 cfv classfx
22 chom classHom
23 9 22 cfv classHomd
24 18 6 cfv classfy
25 21 24 23 co classfxHomdfy
26 20 25 wceq wffranxgy=fxHomdfy
27 26 16 15 wral wffyBasecranxgy=fxHomdfy
28 27 13 15 wral wffxBasecyBasecranxgy=fxHomdfy
29 12 28 wa wfffcFuncdgxBasecyBasecranxgy=fxHomdfy
30 29 4 5 copab classfg|fcFuncdgxBasecyBasecranxgy=fxHomdfy
31 1 3 2 2 30 cmpo classcCat,dCatfg|fcFuncdgxBasecyBasecranxgy=fxHomdfy
32 0 31 wceq wffFull=cCat,dCatfg|fcFuncdgxBasecyBasecranxgy=fxHomdfy