Description: A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 and fcofo . Formerly part of proof of fcof1o . (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by AV, 15-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fcof1od.f | |
|
fcof1od.g | |
||
fcof1od.a | |
||
fcof1od.b | |
||
Assertion | fcof1od | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcof1od.f | |
|
2 | fcof1od.g | |
|
3 | fcof1od.a | |
|
4 | fcof1od.b | |
|
5 | fcof1 | |
|
6 | 1 3 5 | syl2anc | |
7 | fcofo | |
|
8 | 1 2 4 7 | syl3anc | |
9 | df-f1o | |
|
10 | 6 8 9 | sylanbrc | |