Metamath Proof Explorer


Theorem fcof1o

Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015) (Proof shortened by AV, 15-Dec-2019)

Ref Expression
Assertion fcof1o F:ABG:BAFG=IBGF=IAF:A1-1 ontoBF-1=G

Proof

Step Hyp Ref Expression
1 simpll F:ABG:BAFG=IBGF=IAF:AB
2 simplr F:ABG:BAFG=IBGF=IAG:BA
3 simprr F:ABG:BAFG=IBGF=IAGF=IA
4 simprl F:ABG:BAFG=IBGF=IAFG=IB
5 1 2 3 4 fcof1od F:ABG:BAFG=IBGF=IAF:A1-1 ontoB
6 1 2 3 4 2fcoidinvd F:ABG:BAFG=IBGF=IAF-1=G
7 5 6 jca F:ABG:BAFG=IBGF=IAF:A1-1 ontoBF-1=G