| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fcof1od.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 2 |
|
fcof1od.g |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 3 |
|
fcof1od.a |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |
| 4 |
|
fcof1od.b |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 5 |
|
fcof1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 6 |
1 3 5
|
syl2anc |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 7 |
|
fcofo |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 8 |
1 2 4 7
|
syl3anc |
⊢ ( 𝜑 → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 9 |
|
df-f1o |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ) |
| 10 |
6 8 9
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |