Metamath Proof Explorer


Theorem fcofo

Description: An application is surjective if a section exists. Proposition 8 of BourbakiEns p. E.II.18. (Contributed by FL, 17-Nov-2011) (Proof shortened by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion fcofo F:ABS:BAFS=IBF:AontoB

Proof

Step Hyp Ref Expression
1 simp1 F:ABS:BAFS=IBF:AB
2 ffvelcdm S:BAyBSyA
3 2 3ad2antl2 F:ABS:BAFS=IByBSyA
4 simpl3 F:ABS:BAFS=IByBFS=IB
5 4 fveq1d F:ABS:BAFS=IByBFSy=IBy
6 fvco3 S:BAyBFSy=FSy
7 6 3ad2antl2 F:ABS:BAFS=IByBFSy=FSy
8 fvresi yBIBy=y
9 8 adantl F:ABS:BAFS=IByBIBy=y
10 5 7 9 3eqtr3rd F:ABS:BAFS=IByBy=FSy
11 fveq2 x=SyFx=FSy
12 11 rspceeqv SyAy=FSyxAy=Fx
13 3 10 12 syl2anc F:ABS:BAFS=IByBxAy=Fx
14 13 ralrimiva F:ABS:BAFS=IByBxAy=Fx
15 dffo3 F:AontoBF:AByBxAy=Fx
16 1 14 15 sylanbrc F:ABS:BAFS=IBF:AontoB