| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isorcl.i |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
| 2 |
|
isorcl.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 3 |
|
isorcl2.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
eqid |
⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) |
| 5 |
1 2
|
isorcl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 6 |
3 4 5 1
|
isofval2 |
⊢ ( 𝜑 → 𝐼 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ dom ( 𝑥 ( Inv ‘ 𝐶 ) 𝑦 ) ) ) |
| 7 |
6
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ dom ( 𝑥 ( Inv ‘ 𝐶 ) 𝑦 ) ) 𝑌 ) ) |
| 8 |
2 7
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ dom ( 𝑥 ( Inv ‘ 𝐶 ) 𝑦 ) ) 𝑌 ) ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ dom ( 𝑥 ( Inv ‘ 𝐶 ) 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ dom ( 𝑥 ( Inv ‘ 𝐶 ) 𝑦 ) ) |
| 10 |
9
|
elmpocl |
⊢ ( 𝐹 ∈ ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ dom ( 𝑥 ( Inv ‘ 𝐶 ) 𝑦 ) ) 𝑌 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 11 |
8 10
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |