Metamath Proof Explorer


Theorem isorcl2

Description: Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses isorcl.i 𝐼 = ( Iso ‘ 𝐶 )
isorcl.f ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) )
isorcl2.b 𝐵 = ( Base ‘ 𝐶 )
Assertion isorcl2 ( 𝜑 → ( 𝑋𝐵𝑌𝐵 ) )

Proof

Step Hyp Ref Expression
1 isorcl.i 𝐼 = ( Iso ‘ 𝐶 )
2 isorcl.f ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) )
3 isorcl2.b 𝐵 = ( Base ‘ 𝐶 )
4 eqid ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 )
5 1 2 isorcl ( 𝜑𝐶 ∈ Cat )
6 3 4 5 1 isofval2 ( 𝜑𝐼 = ( 𝑥𝐵 , 𝑦𝐵 ↦ dom ( 𝑥 ( Inv ‘ 𝐶 ) 𝑦 ) ) )
7 6 oveqd ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = ( 𝑋 ( 𝑥𝐵 , 𝑦𝐵 ↦ dom ( 𝑥 ( Inv ‘ 𝐶 ) 𝑦 ) ) 𝑌 ) )
8 2 7 eleqtrd ( 𝜑𝐹 ∈ ( 𝑋 ( 𝑥𝐵 , 𝑦𝐵 ↦ dom ( 𝑥 ( Inv ‘ 𝐶 ) 𝑦 ) ) 𝑌 ) )
9 eqid ( 𝑥𝐵 , 𝑦𝐵 ↦ dom ( 𝑥 ( Inv ‘ 𝐶 ) 𝑦 ) ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ dom ( 𝑥 ( Inv ‘ 𝐶 ) 𝑦 ) )
10 9 elmpocl ( 𝐹 ∈ ( 𝑋 ( 𝑥𝐵 , 𝑦𝐵 ↦ dom ( 𝑥 ( Inv ‘ 𝐶 ) 𝑦 ) ) 𝑌 ) → ( 𝑋𝐵𝑌𝐵 ) )
11 8 10 syl ( 𝜑 → ( 𝑋𝐵𝑌𝐵 ) )