Metamath Proof Explorer


Theorem isofval2

Description: Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypotheses isofval2.b 𝐵 = ( Base ‘ 𝐶 )
isofval2.n 𝑁 = ( Inv ‘ 𝐶 )
isofval2.c ( 𝜑𝐶 ∈ Cat )
isofval2.i 𝐼 = ( Iso ‘ 𝐶 )
Assertion isofval2 ( 𝜑𝐼 = ( 𝑥𝐵 , 𝑦𝐵 ↦ dom ( 𝑥 𝑁 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 isofval2.b 𝐵 = ( Base ‘ 𝐶 )
2 isofval2.n 𝑁 = ( Inv ‘ 𝐶 )
3 isofval2.c ( 𝜑𝐶 ∈ Cat )
4 isofval2.i 𝐼 = ( Iso ‘ 𝐶 )
5 isofn ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
6 4 fneq1i ( 𝐼 Fn ( 𝐵 × 𝐵 ) ↔ ( Iso ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) )
7 1 1 xpeq12i ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) )
8 7 fneq2i ( ( Iso ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) ↔ ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
9 6 8 bitri ( 𝐼 Fn ( 𝐵 × 𝐵 ) ↔ ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
10 5 9 sylibr ( 𝐶 ∈ Cat → 𝐼 Fn ( 𝐵 × 𝐵 ) )
11 fnov ( 𝐼 Fn ( 𝐵 × 𝐵 ) ↔ 𝐼 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 𝐼 𝑦 ) ) )
12 10 11 sylib ( 𝐶 ∈ Cat → 𝐼 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 𝐼 𝑦 ) ) )
13 3 12 syl ( 𝜑𝐼 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 𝐼 𝑦 ) ) )
14 3 3ad2ant1 ( ( 𝜑𝑥𝐵𝑦𝐵 ) → 𝐶 ∈ Cat )
15 simp2 ( ( 𝜑𝑥𝐵𝑦𝐵 ) → 𝑥𝐵 )
16 simp3 ( ( 𝜑𝑥𝐵𝑦𝐵 ) → 𝑦𝐵 )
17 1 2 14 15 16 4 isoval ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( 𝑥 𝐼 𝑦 ) = dom ( 𝑥 𝑁 𝑦 ) )
18 17 mpoeq3dva ( 𝜑 → ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ dom ( 𝑥 𝑁 𝑦 ) ) )
19 13 18 eqtrd ( 𝜑𝐼 = ( 𝑥𝐵 , 𝑦𝐵 ↦ dom ( 𝑥 𝑁 𝑦 ) ) )