| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isofval2.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
isofval2.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
| 3 |
|
isofval2.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
isofval2.i |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
| 5 |
|
isofn |
⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 6 |
4
|
fneq1i |
⊢ ( 𝐼 Fn ( 𝐵 × 𝐵 ) ↔ ( Iso ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) ) |
| 7 |
1 1
|
xpeq12i |
⊢ ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
| 8 |
7
|
fneq2i |
⊢ ( ( Iso ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) ↔ ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 9 |
6 8
|
bitri |
⊢ ( 𝐼 Fn ( 𝐵 × 𝐵 ) ↔ ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 10 |
5 9
|
sylibr |
⊢ ( 𝐶 ∈ Cat → 𝐼 Fn ( 𝐵 × 𝐵 ) ) |
| 11 |
|
fnov |
⊢ ( 𝐼 Fn ( 𝐵 × 𝐵 ) ↔ 𝐼 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐼 𝑦 ) ) ) |
| 12 |
10 11
|
sylib |
⊢ ( 𝐶 ∈ Cat → 𝐼 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐼 𝑦 ) ) ) |
| 13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝐼 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐼 𝑦 ) ) ) |
| 14 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 15 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 16 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 17 |
1 2 14 15 16 4
|
isoval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 𝐼 𝑦 ) = dom ( 𝑥 𝑁 𝑦 ) ) |
| 18 |
17
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ dom ( 𝑥 𝑁 𝑦 ) ) ) |
| 19 |
13 18
|
eqtrd |
⊢ ( 𝜑 → 𝐼 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ dom ( 𝑥 𝑁 𝑦 ) ) ) |