| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isorcl.i |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
| 2 |
|
isorcl.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 3 |
|
elfvne0 |
⊢ ( 𝐹 ∈ ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) → 𝐼 ≠ ∅ ) |
| 4 |
|
df-ov |
⊢ ( 𝑋 𝐼 𝑌 ) = ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) |
| 5 |
3 4
|
eleq2s |
⊢ ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) → 𝐼 ≠ ∅ ) |
| 6 |
1
|
neeq1i |
⊢ ( 𝐼 ≠ ∅ ↔ ( Iso ‘ 𝐶 ) ≠ ∅ ) |
| 7 |
|
n0 |
⊢ ( ( Iso ‘ 𝐶 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( Iso ‘ 𝐶 ) ) |
| 8 |
6 7
|
bitri |
⊢ ( 𝐼 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( Iso ‘ 𝐶 ) ) |
| 9 |
5 8
|
sylib |
⊢ ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) → ∃ 𝑥 𝑥 ∈ ( Iso ‘ 𝐶 ) ) |
| 10 |
|
df-iso |
⊢ Iso = ( 𝑐 ∈ Cat ↦ ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝑐 ) ) ) |
| 11 |
10
|
mptrcl |
⊢ ( 𝑥 ∈ ( Iso ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 12 |
11
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ ( Iso ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 13 |
2 9 12
|
3syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |