| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isorcl.i |
|- I = ( Iso ` C ) |
| 2 |
|
isorcl.f |
|- ( ph -> F e. ( X I Y ) ) |
| 3 |
|
elfvne0 |
|- ( F e. ( I ` <. X , Y >. ) -> I =/= (/) ) |
| 4 |
|
df-ov |
|- ( X I Y ) = ( I ` <. X , Y >. ) |
| 5 |
3 4
|
eleq2s |
|- ( F e. ( X I Y ) -> I =/= (/) ) |
| 6 |
1
|
neeq1i |
|- ( I =/= (/) <-> ( Iso ` C ) =/= (/) ) |
| 7 |
|
n0 |
|- ( ( Iso ` C ) =/= (/) <-> E. x x e. ( Iso ` C ) ) |
| 8 |
6 7
|
bitri |
|- ( I =/= (/) <-> E. x x e. ( Iso ` C ) ) |
| 9 |
5 8
|
sylib |
|- ( F e. ( X I Y ) -> E. x x e. ( Iso ` C ) ) |
| 10 |
|
df-iso |
|- Iso = ( c e. Cat |-> ( ( x e. _V |-> dom x ) o. ( Inv ` c ) ) ) |
| 11 |
10
|
mptrcl |
|- ( x e. ( Iso ` C ) -> C e. Cat ) |
| 12 |
11
|
exlimiv |
|- ( E. x x e. ( Iso ` C ) -> C e. Cat ) |
| 13 |
2 9 12
|
3syl |
|- ( ph -> C e. Cat ) |