Metamath Proof Explorer


Theorem isofval2

Description: Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypotheses isofval2.b B = Base C
isofval2.n N = Inv C
isofval2.c φ C Cat
isofval2.i I = Iso C
Assertion isofval2 φ I = x B , y B dom x N y

Proof

Step Hyp Ref Expression
1 isofval2.b B = Base C
2 isofval2.n N = Inv C
3 isofval2.c φ C Cat
4 isofval2.i I = Iso C
5 isofn C Cat Iso C Fn Base C × Base C
6 4 fneq1i I Fn B × B Iso C Fn B × B
7 1 1 xpeq12i B × B = Base C × Base C
8 7 fneq2i Iso C Fn B × B Iso C Fn Base C × Base C
9 6 8 bitri I Fn B × B Iso C Fn Base C × Base C
10 5 9 sylibr C Cat I Fn B × B
11 fnov I Fn B × B I = x B , y B x I y
12 10 11 sylib C Cat I = x B , y B x I y
13 3 12 syl φ I = x B , y B x I y
14 3 3ad2ant1 φ x B y B C Cat
15 simp2 φ x B y B x B
16 simp3 φ x B y B y B
17 1 2 14 15 16 4 isoval φ x B y B x I y = dom x N y
18 17 mpoeq3dva φ x B , y B x I y = x B , y B dom x N y
19 13 18 eqtrd φ I = x B , y B dom x N y