Metamath Proof Explorer


Theorem isofval2

Description: Function value of the function returning the isomorphisms of a category. (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypotheses isofval2.b
|- B = ( Base ` C )
isofval2.n
|- N = ( Inv ` C )
isofval2.c
|- ( ph -> C e. Cat )
isofval2.i
|- I = ( Iso ` C )
Assertion isofval2
|- ( ph -> I = ( x e. B , y e. B |-> dom ( x N y ) ) )

Proof

Step Hyp Ref Expression
1 isofval2.b
 |-  B = ( Base ` C )
2 isofval2.n
 |-  N = ( Inv ` C )
3 isofval2.c
 |-  ( ph -> C e. Cat )
4 isofval2.i
 |-  I = ( Iso ` C )
5 isofn
 |-  ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) )
6 4 fneq1i
 |-  ( I Fn ( B X. B ) <-> ( Iso ` C ) Fn ( B X. B ) )
7 1 1 xpeq12i
 |-  ( B X. B ) = ( ( Base ` C ) X. ( Base ` C ) )
8 7 fneq2i
 |-  ( ( Iso ` C ) Fn ( B X. B ) <-> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) )
9 6 8 bitri
 |-  ( I Fn ( B X. B ) <-> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) )
10 5 9 sylibr
 |-  ( C e. Cat -> I Fn ( B X. B ) )
11 fnov
 |-  ( I Fn ( B X. B ) <-> I = ( x e. B , y e. B |-> ( x I y ) ) )
12 10 11 sylib
 |-  ( C e. Cat -> I = ( x e. B , y e. B |-> ( x I y ) ) )
13 3 12 syl
 |-  ( ph -> I = ( x e. B , y e. B |-> ( x I y ) ) )
14 3 3ad2ant1
 |-  ( ( ph /\ x e. B /\ y e. B ) -> C e. Cat )
15 simp2
 |-  ( ( ph /\ x e. B /\ y e. B ) -> x e. B )
16 simp3
 |-  ( ( ph /\ x e. B /\ y e. B ) -> y e. B )
17 1 2 14 15 16 4 isoval
 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( x I y ) = dom ( x N y ) )
18 17 mpoeq3dva
 |-  ( ph -> ( x e. B , y e. B |-> ( x I y ) ) = ( x e. B , y e. B |-> dom ( x N y ) ) )
19 13 18 eqtrd
 |-  ( ph -> I = ( x e. B , y e. B |-> dom ( x N y ) ) )