| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isofval2.b |
|- B = ( Base ` C ) |
| 2 |
|
isofval2.n |
|- N = ( Inv ` C ) |
| 3 |
|
isofval2.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
isofval2.i |
|- I = ( Iso ` C ) |
| 5 |
|
isofn |
|- ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 6 |
4
|
fneq1i |
|- ( I Fn ( B X. B ) <-> ( Iso ` C ) Fn ( B X. B ) ) |
| 7 |
1 1
|
xpeq12i |
|- ( B X. B ) = ( ( Base ` C ) X. ( Base ` C ) ) |
| 8 |
7
|
fneq2i |
|- ( ( Iso ` C ) Fn ( B X. B ) <-> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 9 |
6 8
|
bitri |
|- ( I Fn ( B X. B ) <-> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 10 |
5 9
|
sylibr |
|- ( C e. Cat -> I Fn ( B X. B ) ) |
| 11 |
|
fnov |
|- ( I Fn ( B X. B ) <-> I = ( x e. B , y e. B |-> ( x I y ) ) ) |
| 12 |
10 11
|
sylib |
|- ( C e. Cat -> I = ( x e. B , y e. B |-> ( x I y ) ) ) |
| 13 |
3 12
|
syl |
|- ( ph -> I = ( x e. B , y e. B |-> ( x I y ) ) ) |
| 14 |
3
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ y e. B ) -> C e. Cat ) |
| 15 |
|
simp2 |
|- ( ( ph /\ x e. B /\ y e. B ) -> x e. B ) |
| 16 |
|
simp3 |
|- ( ( ph /\ x e. B /\ y e. B ) -> y e. B ) |
| 17 |
1 2 14 15 16 4
|
isoval |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( x I y ) = dom ( x N y ) ) |
| 18 |
17
|
mpoeq3dva |
|- ( ph -> ( x e. B , y e. B |-> ( x I y ) ) = ( x e. B , y e. B |-> dom ( x N y ) ) ) |
| 19 |
13 18
|
eqtrd |
|- ( ph -> I = ( x e. B , y e. B |-> dom ( x N y ) ) ) |