| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isoval2.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
| 2 |
|
isoval2.i |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
| 3 |
|
id |
⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) → 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 5 |
2 3
|
isorcl |
⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) → 𝐶 ∈ Cat ) |
| 6 |
2 3 4
|
isorcl2 |
⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 7 |
6
|
simpld |
⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 8 |
6
|
simprd |
⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 9 |
4 1 5 7 8 2
|
isoval |
⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) ) |
| 10 |
3 9
|
eleqtrd |
⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) → 𝑓 ∈ dom ( 𝑋 𝑁 𝑌 ) ) |
| 11 |
|
vex |
⊢ 𝑓 ∈ V |
| 12 |
11
|
eldm |
⊢ ( 𝑓 ∈ dom ( 𝑋 𝑁 𝑌 ) ↔ ∃ 𝑔 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ) |
| 13 |
|
id |
⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 → 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ) |
| 14 |
1 13
|
invrcl |
⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 → 𝐶 ∈ Cat ) |
| 15 |
1 13 4
|
invrcl2 |
⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 16 |
15
|
simpld |
⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 17 |
15
|
simprd |
⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 18 |
4 1 14 16 17 2 13
|
inviso1 |
⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 → 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 19 |
18
|
exlimiv |
⊢ ( ∃ 𝑔 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 → 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 20 |
12 19
|
sylbi |
⊢ ( 𝑓 ∈ dom ( 𝑋 𝑁 𝑌 ) → 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 21 |
10 20
|
impbii |
⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝑓 ∈ dom ( 𝑋 𝑁 𝑌 ) ) |
| 22 |
21
|
eqriv |
⊢ ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) |