| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isoval2.n |
|- N = ( Inv ` C ) |
| 2 |
|
isoval2.i |
|- I = ( Iso ` C ) |
| 3 |
|
id |
|- ( f e. ( X I Y ) -> f e. ( X I Y ) ) |
| 4 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 5 |
2 3
|
isorcl |
|- ( f e. ( X I Y ) -> C e. Cat ) |
| 6 |
2 3 4
|
isorcl2 |
|- ( f e. ( X I Y ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 7 |
6
|
simpld |
|- ( f e. ( X I Y ) -> X e. ( Base ` C ) ) |
| 8 |
6
|
simprd |
|- ( f e. ( X I Y ) -> Y e. ( Base ` C ) ) |
| 9 |
4 1 5 7 8 2
|
isoval |
|- ( f e. ( X I Y ) -> ( X I Y ) = dom ( X N Y ) ) |
| 10 |
3 9
|
eleqtrd |
|- ( f e. ( X I Y ) -> f e. dom ( X N Y ) ) |
| 11 |
|
vex |
|- f e. _V |
| 12 |
11
|
eldm |
|- ( f e. dom ( X N Y ) <-> E. g f ( X N Y ) g ) |
| 13 |
|
id |
|- ( f ( X N Y ) g -> f ( X N Y ) g ) |
| 14 |
1 13
|
invrcl |
|- ( f ( X N Y ) g -> C e. Cat ) |
| 15 |
1 13 4
|
invrcl2 |
|- ( f ( X N Y ) g -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 16 |
15
|
simpld |
|- ( f ( X N Y ) g -> X e. ( Base ` C ) ) |
| 17 |
15
|
simprd |
|- ( f ( X N Y ) g -> Y e. ( Base ` C ) ) |
| 18 |
4 1 14 16 17 2 13
|
inviso1 |
|- ( f ( X N Y ) g -> f e. ( X I Y ) ) |
| 19 |
18
|
exlimiv |
|- ( E. g f ( X N Y ) g -> f e. ( X I Y ) ) |
| 20 |
12 19
|
sylbi |
|- ( f e. dom ( X N Y ) -> f e. ( X I Y ) ) |
| 21 |
10 20
|
impbii |
|- ( f e. ( X I Y ) <-> f e. dom ( X N Y ) ) |
| 22 |
21
|
eqriv |
|- ( X I Y ) = dom ( X N Y ) |