| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catcinv.c |
|- C = ( CatCat ` U ) |
| 2 |
|
catcinv.n |
|- N = ( Inv ` C ) |
| 3 |
|
catcinv.h |
|- H = ( Hom ` C ) |
| 4 |
|
catcinv.i |
|- I = ( idFunc ` X ) |
| 5 |
|
catcinv.j |
|- J = ( idFunc ` Y ) |
| 6 |
|
eqid |
|- ( Sect ` C ) = ( Sect ` C ) |
| 7 |
1 3 4 6
|
catcsect |
|- ( F ( X ( Sect ` C ) Y ) G <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G o.func F ) = I ) ) |
| 8 |
1 3 5 6
|
catcsect |
|- ( G ( Y ( Sect ` C ) X ) F <-> ( ( G e. ( Y H X ) /\ F e. ( X H Y ) ) /\ ( F o.func G ) = J ) ) |
| 9 |
|
ancom |
|- ( ( G e. ( Y H X ) /\ F e. ( X H Y ) ) <-> ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) |
| 10 |
8 9
|
bianbi |
|- ( G ( Y ( Sect ` C ) X ) F <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( F o.func G ) = J ) ) |
| 11 |
7 10
|
anbi12i |
|- ( ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) <-> ( ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G o.func F ) = I ) /\ ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( F o.func G ) = J ) ) ) |
| 12 |
2 6
|
isinv2 |
|- ( F ( X N Y ) G <-> ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) ) |
| 13 |
|
anandi |
|- ( ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( ( G o.func F ) = I /\ ( F o.func G ) = J ) ) <-> ( ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G o.func F ) = I ) /\ ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( F o.func G ) = J ) ) ) |
| 14 |
11 12 13
|
3bitr4i |
|- ( F ( X N Y ) G <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( ( G o.func F ) = I /\ ( F o.func G ) = J ) ) ) |