Metamath Proof Explorer


Theorem bianbi

Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023)

Ref Expression
Hypotheses bianbi.1
|- ( ph <-> ( ps /\ ch ) )
bianbi.2
|- ( ps <-> th )
Assertion bianbi
|- ( ph <-> ( th /\ ch ) )

Proof

Step Hyp Ref Expression
1 bianbi.1
 |-  ( ph <-> ( ps /\ ch ) )
2 bianbi.2
 |-  ( ps <-> th )
3 2 anbi1i
 |-  ( ( ps /\ ch ) <-> ( th /\ ch ) )
4 1 3 bitri
 |-  ( ph <-> ( th /\ ch ) )