Metamath Proof Explorer


Theorem bianim

Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023)

Ref Expression
Hypotheses bianim.1
|- ( ph <-> ( ps /\ ch ) )
bianim.2
|- ( ch -> ( ps <-> th ) )
Assertion bianim
|- ( ph <-> ( th /\ ch ) )

Proof

Step Hyp Ref Expression
1 bianim.1
 |-  ( ph <-> ( ps /\ ch ) )
2 bianim.2
 |-  ( ch -> ( ps <-> th ) )
3 2 pm5.32ri
 |-  ( ( ps /\ ch ) <-> ( th /\ ch ) )
4 1 3 bitri
 |-  ( ph <-> ( th /\ ch ) )