Metamath Proof Explorer


Theorem bianim

Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023)

Ref Expression
Hypotheses bianim.1 φψχ
bianim.2 χψθ
Assertion bianim φθχ

Proof

Step Hyp Ref Expression
1 bianim.1 φψχ
2 bianim.2 χψθ
3 2 pm5.32ri ψχθχ
4 1 3 bitri φθχ