Metamath Proof Explorer


Theorem bianim

Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023)

Ref Expression
Hypotheses bianim.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
bianim.2 ( 𝜒 → ( 𝜓𝜃 ) )
Assertion bianim ( 𝜑 ↔ ( 𝜃𝜒 ) )

Proof

Step Hyp Ref Expression
1 bianim.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
2 bianim.2 ( 𝜒 → ( 𝜓𝜃 ) )
3 2 pm5.32ri ( ( 𝜓𝜒 ) ↔ ( 𝜃𝜒 ) )
4 1 3 bitri ( 𝜑 ↔ ( 𝜃𝜒 ) )