Metamath Proof Explorer
Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023)
|
|
Ref |
Expression |
|
Hypotheses |
bianim.1 |
⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) |
|
|
bianim.2 |
⊢ ( 𝜒 → ( 𝜓 ↔ 𝜃 ) ) |
|
Assertion |
bianim |
⊢ ( 𝜑 ↔ ( 𝜃 ∧ 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bianim.1 |
⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) |
2 |
|
bianim.2 |
⊢ ( 𝜒 → ( 𝜓 ↔ 𝜃 ) ) |
3 |
2
|
pm5.32ri |
⊢ ( ( 𝜓 ∧ 𝜒 ) ↔ ( 𝜃 ∧ 𝜒 ) ) |
4 |
1 3
|
bitri |
⊢ ( 𝜑 ↔ ( 𝜃 ∧ 𝜒 ) ) |