Metamath Proof Explorer


Theorem bianbi

Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023)

Ref Expression
Hypotheses bianbi.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
bianbi.2 ( 𝜓𝜃 )
Assertion bianbi ( 𝜑 ↔ ( 𝜃𝜒 ) )

Proof

Step Hyp Ref Expression
1 bianbi.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
2 bianbi.2 ( 𝜓𝜃 )
3 2 anbi1i ( ( 𝜓𝜒 ) ↔ ( 𝜃𝜒 ) )
4 1 3 bitri ( 𝜑 ↔ ( 𝜃𝜒 ) )