Metamath Proof Explorer


Theorem catcrcl2

Description: Reverse closure for the category of categories (in a universe) (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses catcrcl.c 𝐶 = ( CatCat ‘ 𝑈 )
catcrcl.h 𝐻 = ( Hom ‘ 𝐶 )
catcrcl.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
catcrcl2.b 𝐵 = ( Base ‘ 𝐶 )
Assertion catcrcl2 ( 𝜑 → ( 𝑋𝐵𝑌𝐵 ) )

Proof

Step Hyp Ref Expression
1 catcrcl.c 𝐶 = ( CatCat ‘ 𝑈 )
2 catcrcl.h 𝐻 = ( Hom ‘ 𝐶 )
3 catcrcl.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
4 catcrcl2.b 𝐵 = ( Base ‘ 𝐶 )
5 1 2 3 catcrcl ( 𝜑𝑈 ∈ V )
6 1 4 5 2 catchomfval ( 𝜑𝐻 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 Func 𝑦 ) ) )
7 6 oveqd ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 Func 𝑦 ) ) 𝑌 ) )
8 3 7 eleqtrd ( 𝜑𝐹 ∈ ( 𝑋 ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 Func 𝑦 ) ) 𝑌 ) )
9 eqid ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 Func 𝑦 ) ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 Func 𝑦 ) )
10 9 elmpocl ( 𝐹 ∈ ( 𝑋 ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 Func 𝑦 ) ) 𝑌 ) → ( 𝑋𝐵𝑌𝐵 ) )
11 8 10 syl ( 𝜑 → ( 𝑋𝐵𝑌𝐵 ) )