| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catcrcl.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
catcrcl.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 3 |
|
catcrcl.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 4 |
|
catcrcl2.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 5 |
1 2 3
|
catcrcl |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 6 |
1 4 5 2
|
catchomfval |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) ) |
| 7 |
6
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) 𝑌 ) ) |
| 8 |
3 7
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) 𝑌 ) ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) |
| 10 |
9
|
elmpocl |
⊢ ( 𝐹 ∈ ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) 𝑌 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 11 |
8 10
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |